MITTEILUNGEN
AUS DEN
DEUTSCHEN SCHUTZGEBIETEN
MIT BENUTZUNG AMTLICHER QUellen HERAUSGEGEBEN VON
Dr. H. Marquardsen

ERGÄNZUNGSHEFT NR. 14
Einzelne bezogen: Preis M 3,60

BEITRÄGE
ZUR LANDESKUNDE VON
SÜDWESTAFRIKA

VON
Dr. Fritz Jaeger
AUSSEERORDENTLICHEM PROFESSOR FÜR KOLONIAL-
UND ÜBERSEE GEOGRAPHIE AN DER UNIVERSITÄT BERLIN
UND
Dr. Leo Waibel
 PRIVATDOZENTEN DER GEOGRAPHIE AN DER
UNIVERSITÄT KÖLN

MIT 4 KARTEN UND 6 TAFELN

BERLIN 1920
ERNST SIEGFRIED MITTLER UND SOHN
VERLAGSBUCHHANDELUNG
KOCHSTRASSE 82-75
Beiträge zur Landeskunde von Südwestafrika

von

Dr. Fritz Jaeger
außerordentlicher Professor für Kolonial- und Überseegeographie an der Universität Berlin

und

Dr. Leo Waibel
Privatdozent der Geographie an der Universität Köln
Den deutschen Südwestafrikanern
in treuem Gedenken
gewidmet
Erster Teil:

Übersichten.
Reisebericht, Oberflächengestalt, Gewässer, Landwirtschaft

von

Fritz Jaeger

Mit 4 Karten
Inhalt

Erstes Kapitel

Reisebericht und Vorwort.

1. Aufgaben der Expedition
2. Die Reise durch die Union von Südafrika
3. Von Lüderitzbahn bis Tsumeb
5. Die Reisen an der Eiseschaffhalle
6. Von Otjo Ku Gau
7. Die Soldatenzeit
8. Kleine Reisen im Ovamboland und im Sandfeld, 1913
9. Ausflüge von Swakopmund in die Namib
10. ln Ovambo, Opuwo und Okahandja, Mai und Juni 1916
12. ln Windhoek und Swakopmund, 23. Oktober bis 15. März 1917
15. ln Swakopmund 1918
16. ln Khomas Hochland Anfang 1919, Reiseerreise

Zweites Kapitel

Übersicht über Lage und Oberflächen- gestalt von Südwestafrika.
1. Die abgeschlossene Lage. Hauenshochland und Küstenabsturz
2. Der geologische Bau
3. Die Hochfläche des Binnenlandes
 a) Rumpfläche
 b) Abflachungen und Höhenverhältnisse
 c) Die Inselberge
 d) Das Aufschichtungsgebiet
4. Die Zerfallung des Binnenhochlandes
 a) Allgemeines
 b) Nördliches Namaland
 c) Südfolhes Namaland
 d) Herenland
5. Der Stürzhügel

Drittes Kapitel

Das Wasser.

I. Die Grundlagen: Klima und Boden
II. Oberflächenwasser
1. Vodenung, Einsicker und Abfluß
 a) Vodenung
 b) Einsicker
 c) Abfluß
2. Bestehende Wassersammelungen
3. Die Flöze
 a) Die vier Ablachungen
 b) Flüsse
 c) Das Abkommen
 d) Abflußrichte und abflußlose Gebiete
III. Grundwasser und Quellen.
1. Die räumliche Verteilung des Grundwassers
 a) Schüttungsgelände
 b) Bewässerungsgebiete
 c) Grundwasserzonen
 d) Omasubebene
 e) Aufschichtenregion des Omasubebene
2. Felsgewässer
 a) Allgemeines
 b) Spätflusse
 c) Schichten
 d) Karstgebiete
 e) Heilige Quellen
3. Grundwasserzonen

IV. Die Spielung des Grundwassers und die Frage der Austrocknung

A. Der Wasserhaushalt
1. Die Quellen der Wasserleistante
2. Die Spielung des Grundwassers
3. Die Grundwasserabfuhr
 a) Verdunstung
 b) Abfluß
 c) Verbrauch

<table>
<thead>
<tr>
<th>Seiten</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
</tr>
</tbody>
</table>
Erstes Kapitel.

Reisebericht und Vorwort.

A. Bericht von Jaeger, 1914 bis 1919.

1. Aufgaben der Expedition.

Äußer dem Verfasser nahm Dr. Leo Waibel an der Expedition teil, der 1911/12 die Kammerreise von Professor Thorbecke mitmachte und sich besonders mit Pflanzen- und Tiergeographie beschäftigt hatte. Er übernahm das botanische und zoologische Sammeln sowie die meteorologische Beobachtungen. Den zoologischen Sammeln war ein breiter Raum gewährt worden, als in der geographischen Aufgabe lag, weil aus den Wildreservaten, die die Expedition zu durchreisen gedachte, besonders wertvolle Museumstücke und vielleicht neue Arten zu erwarten waren. Hierdurch schloß sich die Ausrüstung der Expedition zeitlich an. Um uns von der technischen Führung der Expedition, einer bekanntlich sehr zeitraubenden Arbeit, zu entlasten, wurde uns vom Gouvernement der Polizeisurgenamt Gagelmann zugegeben. Wir verdanken seiner Mitwirkung den glatten Verlauf der Expedition bis zum Kriegsauftakt.

Der Ausbruch des großen Krieges, der die ganze Welt in Mitleidenschaft zog, hat auch die Pläne unserer Expedition über die Haufen geworfen. Waibel und ich wurden als Soldaten
eingezogen. Er hat fünf Gefechte mitgemacht, ich
eines. Nachdem der Krieg im Schutzgebiet beendet
und das Land von den Engländern besetzt war,
und uns von diesen nicht gestattet, unsere Expedi-
tion fortzusetzen und das Kaokofeld zu bereisen.
Im übrigen Lande konnten wir meist ziemlich unbehin-
dert reisen. So konnten wir zwar die ursprüngli-
chen Aufgaben der Expedition nur zum Teil aus-
führen. Aber wir konnten im Laufe der Kriegs-
jahre immer mehr Gebiete bereisen, wenn auch mit
sehr bescheidenen Mitteln. Der fünfjährige Aufent-
halt im Lande verschaffte uns eine gute Landes-
kenntnis. Statt der unbewohnten haben wir nun
gerade die besiedelten Gebiete kennen gelernt und
tenen die Erfahrungen der Anssägen, be-
sonders diesejenigen über das Wasser und die Land-
wirtschaft, in ziemlichem Umfange sammeln und
geographisch auswerten. Unsere Aufgabe weistet
sich allmählich darin aus, möglichst viele Lands-
chaften von Süßwestafrika geographisch zu
beschreiben und außerdem die geographischen Er-
scheinungen der Oberschichtengestalt, des Klimas,
der Pflanzengewalt und der Wirtschaft vergleichend
über das ganze Schutzgebiet zu verfolgen. So ist das
Ergebnis unserer Forschungen von einer ausführ-
liefer Monographie des ganzen Süßwestafrika nicht
mehr allzuweit entfernt.

2. Die Reise durch die Union von Süßafrika.
Am 24. Februar 1914 reisten Dr. Waibel
und ich mit der „Gertrud Wiermann“ von Hamburg
ab. Am 22. März landete Waibel in Swakop-
mund, um einstweilen die Ausrüstung zu besorgen;
ihr fuhr nach Kapstadt weiter, wo ich am 25. morgen
anrückte. Dass ich im britischen Süßafrika in
curier Zeit viel sehen konnte, verdanke ich Herrn
Dr. Rogers, dem Leiter der geologischen Lan-
desaufnahmen im Kapland. Er erwirkte für mich bei
der Unionserregierung frei Fahrt auf den Eisen-
bahnen und sonstigen Fahrzeugen und begleitete
mich dienstlich. So durfte ich überall seine lands-
underscheidungsfähigkeit und seine liebenswürdige Gesell-
schaft genießen, deren ich noch heute mit dankbarer
Freude gedenke.
Unsere gemeinsame Reise führte uns nach Kim-
berley, Johannesburg und bis zu den Steilabfahsen
brachte uns der Schnellzug auf der Hauptlinie Süßafrikas
über die malerischen kapitänlichen Ge-
brücksketten nach Laingsburg. Von da unternehmen
wir am 27. eine Wagenfahrt in die südliche Um-
gegend, nach dem Durchbruch des Buizels River
durch die Zwarte Berg. Hierbei beruhte ich ein
Stück Karroolandschaft kennen und die aus härte-
ren Gesteinen bestehenden Bergziege, die daraus
anfragen. Am 28. führte uns die Eisenbahn den
ganzen Tag durch die einförmige Große Karroo und
dann über die großen Steilabfahsen hinauf zur Hoch-
fläche des Binnenlandes nach die Aar. Am nächsten
Morgen kamen wir in Kimberley an und unter-
nehmend in einer von der de Beers Company zur
Verfügung gestellten Kraftrum eine Rundfahrt
nach Nordwesten über den Vaalfluss und auf das
Kaaapplateau, ein Kalkgebiet, das mit dem Karstfeld
im nördlichen Süßwestafrika ähnlichlich hat. Am
30. besichtigten wir die Aufbereitungsarbeiten der
de Beers-Diamantrönn und auch den ringum-
cherkissten Hof, in dem die schwere Minenarbei-
ter wohnen, und der während des Krieges zur Unter-
bringung der deutschen Gefangenen aus Süßwest-
afrika diente. Am Abend des 30. März verließ wir
Kimberley im Zuge nach Pretoria. Man führ
über Johannesburg, mitten durch das Goldgebiet
des Witwatersrandes, und nichts gab mir einen
der Eindruck von der Bedeutung dieses Gold-
berges als die vielen weißen Abrasenberge, die
sich aus der grünen Hochfläche erhoben, und zwi-
chen denen die Bahn stundenlang hindurchfährt.
Von Pretoria machten wir unter Führung des Herrn
H. H. von der geologischen Landesaanstalt einen
sehr interessanten Abstecher an den östlichen Rand
des Binnenhochlandes. Der von der Station Godwaan,
halbwegs zwischen Pretoria und Lourenço Mar-
quita, führen wir in einem Stellwagen hinauf auf
Devils Kantoer, wo man von der Höhe des wohl
500 m hohen Steilabfalls eine glänzende Übersicht
über die vorliegende Küstenabflachung genießt. Der
Nachtschneffezug brachte uns wieder nach Johanne-
sburg. Dort fuhrten wir am 3. April in ein Gold-
bergwerk ein, die City and Suburban Mine, und
besichtigten die Aufbereitungstangren.
Leider erkrankte ich in Johannesburg an Dys-
enterie, so dass ich die geplante Reise über Port El-
sabet und Oudtshoroom aufgeben und mich auf
in eine Pflegeanstalt begeben musste. Als Geesche-
nder sah ich nach etwas von Johanneburg und Um-
Reise nach Kapstadt antreten. Die Zeit bis
dem Abgang des Dampfers nach Lüderitzbacht am
27. April benutze ich zu lehre- und genügsamen Anflügen mit Dr. Rogers und dem Botaniker
Prof. Dr. Wirt. Erwähnt seien die Bestei-
gung des Tafelberges, des Löwenkopfes, eine Auto-
fahrt um den Tafelberg und eine nach Stellenbosch.

3. Von Lüderitzbacht bis Tsumeb.
Am Morgen des 29. April kamen wir in Lüde-
rizbacht an. Dr. Rogers fuhr mit mir, um

Von Windhuk aus konnte ich, dank der freundlichen Unterstützung des Gouvernements und der Deutschen Farmgesellschaft, einige Ausflüge unternehmen, die mich nicht nur über die landwirtschaftlichen Verhältnisse des mittleren Landesteils belehrten, sondern auch morphologische Ergebnisse zeigten.

stät Nauchis und besuchte dort einen Aussichts-
punkt zum Westen des Binnenhochlandes, das Gegenstück zum Devils Kancore östlich von Pre-
toria. Von da blickte ich tief hinunter auf die Namibwüste. Vom 15. bis 17. Juni besuchte ich das östliche Gegenstück des Khomas Hochlandes, das Neuhammer Hochland, insbesondere die Ackerran-
Versuchsfarm Neuhalm, die Farm Onambo und die Straßenfarm Otjimbasu.

Am 19. Juni trat ich die Weiterfahrt nach Tsumeb an, unterbrach ich aber in Okahandja, um mir einige Kleinsiedlungen in Osma anzusehen. Das Grundwasser des Swakop und des Okahandja-

Am 22. Juni traf ich in Tsumeb wieder mit Dr. Waidbel zusammen, der inzwischen verschiedene Reisen unternommen und die Expedition zur Euterschaftanze gerüstet hatte. Unter Führung von Obersteiger Beyrer und Dr. Schneiderhöhn besichtigten wir eingehend das Tsumebner Kupferbergwerk, das für Südwest nicht nur durch die Kupfererzeugung wichtig ist, sondern auch sehr viel zur Erschließung des Landes beigetragen hat. Um das Kupfer zu verfrachten zu können, wurde nämlich die 560 km lange Schmalspurbahn von Swakopmund nach Tsumeb gebaut.

Nach Vereinbarung zweier von der Hamburger Seewarte mitgebrachten Quecksilberbarometer mit den Stationenbarometern in Swakopmund und Jaku-
donga traf Dr. Waidbel am 1. April in Groots-
fontein ein. Dort hatte er viel zu tun mit der Aus-
rüstung und Zusammenstellung der Expedition. Über Ostern machte er einen vier tägigen Ausflug ins Sandfleck, nach Otjipto und Otjomavare. Am 14. April begann er eine Reise durch Otavibergland und das Karasfeld südlich der Euterschafter, die hauptsächlich der Untersuchung der Karasfeld-
waterstellen und botanischen und zoologischen Sammeln gewidmet war. Über Gahm und Tsumeb zog er an den Otjikotoise und den Gneisswasser, die beide ausgelotet wurden. Über Soavis, die über 30 m tiefe, am Grunde mit Wasser erfüllte Höhle Obab, den weiten Kessel von Hoais und die Farm Na-
parib ging es nach Namutoni an der Euterschaftanze.

Von Namutoni aus zog Wäßbel alsdann noch einmal auf anderem Wege durchs Karstfeld, wobei u. a. die Höhlen Achawagab, Aigab und Aigamas untersucht wurden, die alle in der Tiefe Wasser enthalten.

5. Die Reisen an der Etoschpfanne.

Auf dieser Reise waren topographische Aufnahmen erforderlich. Ich versuchte erst mit dem Politisch einen Polyskog zu legen, mußte es aber bald aufgeben, da die vorspringenden Halbinseln nicht so scharf, sondern abgerundet waren, so daß man von einem Punkt selten den vorigen und den nächsten Punkt gleichzeitig sehen konnte. Ich be-
die oberste Tonkruste in zollgroße polygonale Stücke zerfällt. Er hat keine Salzkrusten. Gegen das Ufer steigt der Boden ganz sanft wohl ½ bis 1 m an. Dieser Uferstreifen pflegt mit Salzkrusten bedeckt zu sein. Auf ihm beginnt auch schon die Vegetation in Gestalt rötlicher Salzalgenbüsch. Das Ufer besteht durchweg aus tonigem Sand mit zahlreichen, eigenartig gestalteten Konkretionen, die aus Abhang und auf der Terrassenoberfläche auswachsen und auch den äußeren Saum des Pfannenbodens stellenweise bedecken. In diesem tonigen Sand, der oft hartartig zusammenhält und daher steile Böschungen zulässt, sind mehrere Terrassen vorhanden, in 1 m, etwa 3 m, 6 m, 12 m über dem Pfannenboden. An der Nordhalbinsel war eine in 17 m beobachtet. Die i-m- und 3-m-Terrasse sind mit Quellgras bedeckt. Die letztere ist keinwegs durchgegangen vorhanden. Die 6-m- und 12-m-Terrasse sind mit Kalkkrusten bedeckt, die bisweilen die ausgewitterten Konkretionen zu einer Brekzie verketten, und mit Busch oder Wald be- wachsen.

Da das Amboland nicht von Weiten besiedelt ist, hat sich das Leben der Ovambo ziemlich ursprünglich erhalten. Der Häuptling Martin gab mir nach einigen Stunden einen Führer nach der 50 km südwestlich gelegenen Salzpanne, von der die Ondongaseite ihr Salz haben. Da unterwegs kein Wasser sein sollte, ritten wir die Nacht durch. Mit den erwähnten Pferden war es dann leider nicht mehr möglich, so weit südwestwärts vorzudringen, daß die Etoschafpanne in Sicht kam; daher ist die Lage der Salzpanne nur mangelhaft bekannt.

Als ich wieder nach Olokonda zurückkam, erhielt ich durch einen Bote das Telegramm: „Deutschland, Österreich Krieg mit England, Polen, Frankreich.“

6. Von Outjo bis Gausb.

In Outjo wurde Dr. Walther, der Ersatzreservist war, eingezogen, und den Polizeiengesellen musste ich auf meinen Posten entlassen. So war es für mich ausgeschlossen, die geplante Reise ins Kaokofeld zu unternehmen. Ich begab mich daher, einer freundlichen Einladung von Herrn Missionar Veder folgend, nach Gausb im Otavi-Bergland, von wo ich die nähere Umgebung zu studieren gedachte.

7. Die Soldatenzeit.

Der Lange Heinrich ist ein mächtiger, erschlagener Quarzitmassiv der Küstenabachung. Er erhebt sich etwa 700 m über das Swakop und 1180 m über das Meer. Die Aussicht von da oben war großartig. Wir überblickten die weiten, kahlen Flächen der Küstenabachung von stollem Blick des Hochlandes im Osten bis zum Meer im Westen. Wenn kein Darst oder Nebel die Küste bedeckte, konnten wir die Bewegungen der fröhlichen Schiffe in der über 80 km entfernten Felsenbucht erkennen.

Die Fläche der Küstenabachung ist durch die tiefen Eingänge des Swakop und des Khan in mehrere Hochseen zerlegt, aus denen Inselberge als Landmarken aufragen. Die kurzen Nebentäler zerschneiden einen Streifen breit aus der Täler zu einem labyrinthischen Berggewirr.

Mit diesem unglücklichen Geschäft begann der Rückweg der Truppen. Während des April lag
unsere Kompagnie bei Kilometer 199 der Bahn zwischen Kubas und Abab, am Fuße des mächtigen, steilwandigen Quarzitmassivs der Otjipateraberge.

An einem Sonntag erhielt ich Urlaub, um einen höheren Berggipfel westlich des Sattels zu besteigen. Ich gewann eine prächtige Übersicht über das westliche Otavibergland und die Ebene von Khorab und erkannte hier zuerst einen eigentümlichen Zug im Relief des Berglandes, die Reliefumkehr. Die tektonisch am meisten gehöhlenen Stellen bildeten die Seen und Täler, die tektonisch tief liegenden aber die Bergketten.

8. Kleine Reisen im Otavibergland und im Sandfeld.

1915.

In Windahu konnte ich mit dem Mineralogen Dr. Schneiderhöhn einen Ausflug ins Ausgebrannte unternehmen. Wir entdeckten dort mehrere vulkanische Tuffschlotter. Ich kürzte meine früher
gewonnenen Anschauungen über die Oberflächen-
gestaltung.

In Grootfontein erhielten Waibel und ich nach langem vergeblichen Warten wenigstens die Erlaubnis, das Otaviöbergland zu bereisen.

Vom 24. bis 28. August unternahmen wir eine Fahrt nach den Farmen Alfredsbühle und Utikoms. Im September traten wir eine vierwöchentliche Reise ins Otaviöbergland an auf folgenden Wegen:

Wir stellten die Schichtenfolge und die Lagerungsverhältnisse der Otaviformation fest. Das Otaviöbergland ist ein Faltengebirge mit Granitintrusionen, dessen Falten derart abgetragen sind, daß die Synklinen in der Regel als Bergmassive aufragen, die Antiklinen die Taläste bilden. Mehrere Höhlen, die Wasser enthalten, wurden besucht. Die Quellen des Otaviöberglandes entspringen an der Auflagerung des Otavikalkes auf der Unterlage von Granit oder Sandstein. Von der Farmwirtschaft des Otaviöberglandes gewannen wir ein deutliches Bild und studierten auf vielen Farmen die Anpassung der Wirtschaft an die besonderen örtlichen Verhältnisse.

Im November besuchten wir die Farmen Oli-
fontein und Wilhelmsburg.

Um einmal ein Stück des Sandfeldes kennenzulernen, reisten wir im Dezember 1914 nach der Farm Neitsas, 75 km östlich Grootfontein, wo Dr. B. uns auf freundlichste Art aufnahm und uns wertvolle Auskünfte gab. Von Neitsas unternahmen wir einen Abstecher nach Nungas, der uns auch mit dem dortigen Kung-Bauernleben in Berüh- rung brachte. Auf dem Rückweg zogen wir über Otjitu, Otjinakambo und durch die Palmreiffläche südlich von Grootfontein.

Im April konnte ich noch einmal eine Reise in die Namib machen mit einem Lastauto der Deutschen

10. In Omaruru, Otjimbingwe und Okahandja, Mai und Juni 1916.

Von Oparakane zogen wir über die Kalkpflanzen und gleichnamigen Farmen Ewara, Okatjekuri, Okawarunendo nach Farm Waidmanashiel. Die genannten Kalkpflanzen, von denen sich besonders Ewara durch prächtigen Alluvialwald auszeichnet, liegen nicht in stärker eingeschnittenen Tälern, sondern sind nur wenig in die Sandfläche eingewachsen. Das Farmhaus von Waidmanashiel liegt am Tal-

Am Nachtaufbruch Otjikorrind am Schwarzen Nossob, wo uns die treibende Gastfreundschaft der Familie Kramer aufriefen, blieben wir ebenfalls einige Tage und ergänzten in Nebenflüssen des Nossob die Studien über die kalkhaltigen Talern.

12. In Windhuk und Swakopmund,

13. Reise im nördlichen Namaland,

Die folgenden Tage in Goamus und in Gibeon brachte noch einige ergänzende Erfahrungen.

Freude, daß Schneiderhöhn meine 1915 ge-
rade bei Autors gewonnenen Anschauungen über das
Oasenvermland bestätigte. Ich besuchte noch eine
mal den Signalberg mit seiner prächtigen Aussicht.
Mit Schneiderhöhn machte ich vom 22. bis
29. October eine Rundfahrt durch das südliche
Vorgelände des Oasenverlandes. In Ausis und
Ghiah zuerst, wo Farraer Härmsen fossile Knochen im
Uferflächenkalk gefunden hatte, und nach Tsaris.
Über Breitenbach fuhren wir durch den Oumamara
Dendara zur Oumamonde, dann über Hairab,
Okanitombe nach Oka-pukuma, endlich nach Groot-
fontein. Ich konnte manchmal über die Grund-
waßer der Grootfonteiner Fläche beobachten
und erfahren.

Um die Grootfonteiner Fläche noch etwas ge-
nauer kennen zu lernen, folgte ich vom 2. bis 13. No-

tember der Einladung des Herrn Brünnl, ihn
mit auf seiner Farm Braunschwein zu besuchen.

Für das Oasenvermland selbst wurden meine
Standquartiere erst Harasch, dann Gob. Auf Farm
Harasch beschloß ich unter Führung des Farmers
Hörmann und seines Sohnes die verschiedenen
Höhlen, Spalten- und Dolinen sowie den Gig-
usakos. Auch führte ich nach der Nosibente, die
Herr Bergingenieur Zöry 11 mit zeigte.

In Gob wurden die früheren Beobachtungen
durch mehrere Ausflüge und Untersuchung der
Quellen von Ganachamra ergänzt, und das Kapitel
über das Oasenvermland verfaßt.

Am 12. Dezember fuhr ich nach Tsaris, um
im Anschluß an die dort seit einem halben Jahr in-
ergereichten Fortbildungskurse einen Vortrag zu
halten. Ich besichtigte unter Führung des Betriebs-
leiters Herrn Dr. Hesse die Aufbereitung der
heimwärts nach Swakopmund.

15. in Swakopmund 1918.

Das Jahr 1918 blieb ich ganz in Swakopmund, um
meine Forschungen auszuarbeiten, soweit dies
ohne Gesteinsuntersuchungen und mit nur geringen
literarischen Hilfsmitteln möglich war. In diesem
Jahr kam der Swakop einmal, aber sehr stark ab,
und zwar erst in den letzten Märztagen. Eine
Fahrt nach Parson Birkenfeld - 24 km
überhalb Swakopmund - zeigte, daß der Grund-
waßerstand sich so gehoben hatte, daß der Fluß an
einigen Stellen, bei Kilometer 5 und bei Kilo-
meter 10, offen fluß. Birkenfeld liegt schon im
Camatal des Swakop. Kurz vorher besuchte ich
ich Salzpflanze 11 km nördlich von Swakopmund,
eine eingetrocknete Lagune, deren Salz seit 1917
abgebaut wird. Ein etwas größerer Ausflug führte
ich Anfang Dezember nach der Khankupfergrube,
wo man auf eine Schmalspangrube von der Eisen-
banbahnstation Arandis aus erreichte. Der Direktor
Wendenborn zeigte mir das derzeit nicht in
Betrieb befindliche Bergwerk und die Maschinen-
anlagen. Von den Ausflügen in die Umgebung der
Khankupfergrube war der interessanteste der über das
Khan-

10. Im Khomas Hochland Anfang 1919.

Heimreise.

Als aber Anfang 1919 noch immer keine Aussicht auf Heimkehr bestand, suchte ich noch durch
Reisen in nicht zu entlegenem Gegend meine Lan-
deskennze zu erweitern. Meinem Wunsche kam
defeckicht die Deutschen Faringsellschaft ent-
gegen, eine genaue Beschreibung aller Wasserstel-
en im Khomas Hochland anzulegen. Nach kurzem
Aufenthalt in Klein-Windhuk bereiste ich das Kho-
mas Hochland, wobei die Gesellschaft mir alles
Nötige zur Verfügung stellt. Mein erster Stand-
quartier war Schewleam-Löwitquelle, wo ich von
 einem langjährigen Angestellten der Gesellschaft
sehr wertvolle Auskünfte erhielt und unter seiner
Führung die interessantesten Wasserstelle der Um-
gegend besuchte. Dann ging es nach dem Khanal,
zu der Kobbosquelle und nach Gob, das wieder ein
Standquartier für Ausflüge in die Umgebung wurde.
Eine weitere Reise führte mich in den Nordostaus
Khomas Hochlandes und an den mittleren Swakop,
von Klein-Barmen bis zum Liwenberg. Nachdem
Alt-Heusis das „Wasserarchiv“ ausgearbeitet
war, rückten die Aussichten zur Heimreise in größe-
bare Nähe, da die Engländer, entgegen dem Vertrag
von Khorab, eine große Zahl von Deutschen unter
Kriegsrecht zwangsweise heimbezögen. Daß
manche, darunter auch mir, die Heimreise sehr
willkommen war, ändert an der Vertragsbruche

B. Bericht über meine Tätigkeit in Deutsch-Südwestafrika während der Jahre 1917 bis 1919.

Von Dr. phil. Leo Wälbel

1917.

Die erste Hälfte des Jahres 1917 hielt ich mich in Swakopmund auf, um die Ergebnisse der Reisen des Jahres 1916 zuzuarbeiten; sie wurden nieder-gelegt in zwei größeren Abhandlungen: „Die perio-
disch trockenen Gebiete des tropischen Afrika“ und „Beiträge zur Ökologie der südwestafrikanischen Steppe“. Meiner Tätigkeit während des Jahres 1916 entsprechend, sind beide Abhandlungen botanis-
chen und pflanzengeographischen Inhalts.

Am 12. Juni 1917 verließ ich Swakopmund und fuhr mit der Eisenbahn nach Windhuk; hier verkaufte ich den Rest unserer Expeditionstiere und trat mit dem Erlös eine größere Reise nach dem Süden des Schutzgebietes an, um die großen Karras-
berge zu erforschen, die wissenschaftlich noch so gut wie ganz unbekannt waren.

Am 19. Juni fuhr ich mit der Bahn von Wind-
huk nach Keetmanshoop und am 20. weiter nach Kalkfontein-Süd. Am 22. ritt ich nach Daveghis zu Herrn Farmer P. P. P. e. um von ihm für die be-
absichtigte Reise Karre und Tiere zu leißen. Vom 23. bis 28. unternahmen wir beide einen Ausflug nach Neufontain und an die Karroodecke der hohen Welle und zittern ohne Warshaw nach der Farm zurück.

Am 1. Juli 1917 begannen die eigentliche Expe-
quartier ein. Zu Fuß, zu Pferd, zu Wagen unter-
nahmen ich Tag für Tag Ausflüge in die nähere und weite Umgebung. Am 17. wurde der Kam-

Am 14. August verließ ich endgültig die gast-
fliche Farm und treckte nordwestärts über die Hoch-
fläche der kleinen Karrasberge hinüber auf der Pad Hoas, Artes, Arep zum Löwenfluß und weiter nach Keetmanshoop. Hier traf ich am 18. ein. In der Stadt wurden die bisherigen photographischen Pla-
shabe her zu erhalten, am 20. ging es in das Ge-
birge der großen Karrasberge hinein nach Ste-
hinauf bis in die Nähe der Kraikluft, und am 22.
treckten wir über Gutswaas nach Narubis zurück.
Am 26./29. machte ich ostwärts eine Tour nach
Dunkernödder.

Am 1. Oktober verließ ich endgültig Narubis
undreckte nach Kaudas, um nordwärts um den
Fuß der großen Karrasberge herumzufahren. Von
Kaudas machte ich am 2/4 eine Tour ostwärts ins
Gebirge hinein; am 4. treckte ich nach Ganskaris
am Löwenfuß, am 5. ritt ich durch die Schlucht
von Flusses nach Gründorn, während die Kanne
außen um das Gebirge herumfahren mußte. Am 7.
ritt ich auf die Farm Naute, um mir von Herrn
Wittmann wichtige Erkundigungen einzutragen.
Am 9. verließ ich Gründorn und treckte von nun an
südwärts am Ostfuß der großen Karrasberge ent-
läng. Über Namus und Korobes traf ich am 11.
auf der ehemaligen Polizeistation Kochena ein und
machte nun hier ein drittes Standquartier.

Am 12. bestieg ich von Kochena aus einen Aus-
lieferer des Schneiderberges im Westen, auf 14.
treckte ich nach Roifor und ritt nordwestlich in
die Diaritschlucht hinein, am 16. ging es südwest
Am 17. und 18. wurde der 2002 m
hohe Schroffenstein, der höchste Berg der Karras-
berge und des ganzen Namalandes, erstiegen. Am
19. ging es zurück nach Kochena. Am 20./22. ritt
ich westwärts über das Gebirge hinterüber nach
Narubis.

und 26. ostwärts auf einer sehr schlechten Padd
Hohenfelsrand hinunter nach Gänzanas. Dabei
beachtete ich die von Herrn Papke gegebene Karte
zusammen. Am 27. ritt ich voraus nach Sandmund
zur Herrn Farnier Thiele, der mit seinem
Vater die eigene Karte aus
Basidein. Am 28. ritt ich auf der
Hochfläche der Kraikluft hinunter und am 1. November nach Sandmund zurück.
Am 2. fuhr ich wieder mit dem Padd zu Herrn
Thiele und meinem ganz Padd am Ostrand
des Nebenberges östlich versetzt. Durch den
Vorstand meiner Karte mußte ich diese letzte
Strecke der Rundreise leider sehr abkürzen; ich
treckte über Narubis-Süd, Haschamas, Gais, Kasus
Am 7. ging es weiter nach Davukisal. Hier blieb ich
als Gast der allezeit freundlichen Familie Papke
bis zum 13. November und entwickelte den Rest der
Kalkssteine mit der Eisenbahn nach Koommar
zurück und am 18. November weiter nach Windhuk.

Damit hatte ich die fünfmonatige Studienreise
beendet. Die erzielten Resultate haben den Aufwand
von Zeit und Arbeit reichlich gelohnt.

Für große Teile der Karrasberge lagen sehr
feine Karten des Feldvermessungsstrups im Ma
stab 1:100,000 vor; sie haben meine Arbeit sehr
leichter und waren überhaupt die außerste Veran-
lassung, daß ich mir gerade dies Gebirge als Arbeits-
gebiet herausgesucht. Wo die Karten fehlten, wurden
eigene topographische Aufnahmen mittels Mef
und Kompas gemacht. Das ganze Gebiet wurde
geologisch kartiert, ebenfalls im Maßstab 1:100,000,
und die hauptsächlichsten Gesteine wurden gesam
melt; 110 Proben enthält die Sammlung. Vor allem
war die Morphologie des Gebirges große Auf
merksamkeit gewidmet, die Entstehung des geolog
schen Bauens und die Umgebungen durch äußere
Krafte wurden dargelegt und das Landschaftsbild in
etwa 300 photographischen Aufnahmen festgehalten.
Die Pflanzen wurden gesammelt, soweit sie
Oberflächenwärts blühten, und ihre horizontale und vertikale Verbreitung in die Karten eingetragen.
Dazwischen wurde das Material beobachtet und dreimal
untersucht. Im übrigen wurde auch die Wirtschaft und den Siedlungen des Menschen gewidmet.

So liegt ein reichliches Material vor, um eine
vollständige Landeskunde der großen Karrasberge
zuschreiben. Es ist nur zu wünschen, daß auch die
Drucklegung und Veröffentlichung der umfang
reichen Arbeit sich ermöglichen läßt.

1918.

Gleich nach meiner Ankunft in Windhuk be
gann ich mit der Ausarbeitung der Reiseergebnisse
außerhalb der Karrasbergen. Bis Ende Juni hatte ich den
Gebirgsbau und die Morphologie fertig in einer
Größerer Abhandlung. Sie ist reich mit Karten,
Skizzen und Bildern versehen.

Gern hätte ich den Anblick, den neue
Reise ins südliche Namaland unternehmen, wo so
viel interessante Probleme und so reiche Resultate
lockten. Aber die Geldmittel der Expedition waren
volkswagen erschöpft, und das karge Gehalt, das die
Regierung mir zahlte, reichte eben gerade zum
Leben. An der Fortsetzung der Reiseergebnisse
konnte ich mich nicht weiterarbeiten, da ich erst
mitgebrachten Pflanzen bestimmt werden
müßten.

So entschloß ich mich denn an einer meteorolo
gischen Arbeit an der Hauptwetterkarte in Wind
huk, die viel Erfolg versprach. In den Karras
bergen hatte ich im Jahre vorher reiche Winterregen
erlebt und ihren großen Einfluß auf Natur und Wir

16

1919.

In den nächsten Monaten, von Januar bis April, schrieb ich die Arbeit über die Winterregen fertig nieder; sie ist noch mit Tabellen, Diagrammen und Karten ausgestattet und bringt nicht nur über die Winterregen, sondern auch über das Klima des Namalandes reiche Aufschlüsse.

d el ab, und wir treckten südwestwärts auf die Farm, wo wir des Abends ankamen. Die nächsten Tage machte ich kleinere Touren in die Umgebung und sichtete vor allem eine botanische Sammlung, die Herr S c h a n d e r l für mich angelegt hatte.

Andere Farmer gab es nicht in dem weiten Gebiet zwischen Karrasbergen und Orange; zu einer selbständigen Expedition reichten meine Mittel nicht aus, und so verließ ich dann am 4. Juni mit den Gebrüdern S c h a n d e r l die Farm, auf der die beiden zehn Jahre arbeiteten, und die für den Lebensbruch, Haus und Hof blieben offen zurück.

C. Überblick über das gewonnene Material und die Ergebnisse.

An Photographien, meist Landschaftsbildern, haben wir 2400 mitgebracht. Die geologische Sammlung enthält gegen 400 Nummern, von denen allerdings ein Teil durch den Krieg verlorenging. Am meisten hat die zoologische Sammlung gelitten, die auf den späteren Reisen zur Zeit der englischen Besetzung nicht mehr fortgesetzt werden konnte, und von der außerdem wertvolle Stücke verloren sind. Die botanische Sammlung kam nur auf 600 Nummern, was wesentlich daran liegt, daß die meisten unserer Reisen in die Trockenzzeit fielen.

Unser reiches Beobachtungsmaterial haben wir bereits in Südafrika zusammengestellt in den folgenden Landschaftsbeschreibungen und Über-
Übersicht über Lage und Oberflächengestalt von Südwestafrika

1. Die abgeschlossene Lage; Binnenhochland und Küstenablösung.

Südwestafrika ist ein politischer Ausschnitt aus dem südlichen Teile des afrikanischen Kontinents und hat daher Anteil an den Eigentümlichkeiten der Lage und Beschaffenheit von Südostafrika. Als ein Vorsprung am Rande der östlichen Festlandsmasse, der durch weite, unwegsame und unerreichliche Landstrecken, die Wüste Sahara und die Urwaldzone

deutsch wurde und ein Stück deutscher Kultur aufnehmen konnte. Ihr ist es aber auch zuzuschreiben, daß das Land noch heute ein ganz junges Kolonialgebiet ist, in den Anfangsstadien seiner Entwicklung.

Um diese Abgeschlossenheit zu verstellen, müssen wir einen Blick auf die landschaftlichen Unterschiede innerhalb Südafrikas werfen. Nicht durch eine reich gegliederte Küstenlinie wird Südafrika in verschiedene Teile zerlegt — der einfache Küstenverlauf fällt es vielmehr zu einer Einheit zusammen —, sondern durch Unterschiede des Klimas und der Boden gestaltung, welche entsprechende Unterschiede der Gewässer, der Pflanzen- und Tierwelt und des Wirtschaftslebens bewirken.

Mit der klimatischen Einteilung kreuzt sich die morphologische. Nach seiner Oberflächengestalt zerfällt Südafrika, wie besonders Passarge klar dargelegt hat, in drei Teile, die in Form konzentrischer Ringe angeordnet sind (4). Zunächst sind zwei Hauptteile zu unterscheiden, das Binnenhochland und die Küstenabschüttung. Meist sind die durch einen hohen Steilabfall des Binnenhochlandes voneinander getrennt, der zugleich die Wasserscheide bildet. Da nämlich das Binnenhochland beckenförmig eingebettet ist, in der Mitte tiefer als am Rande, so ist seine Entwässerung nach innen gerichtet, abgesehen von einigen durchbruchsfähigen. Im nördlichen Südafrika allerdings reicht das Einzugsgebiet der Küstenflüsse noch weit auf das Binnenhochland hinauf, ist also ausgedehnter als die Küstenabschüttung im morphologischen Sinne. Aber auch hier gehen große Flussysteme des Hochlandes bisinnenwärts.

Alle drei Teile Südafrikas, die Küstenabschüttung, die Randhochländer und die Kalahari, gehören mehreren klimatischen Gebieten an. Daraus ergeben sich landschaftliche Unterabteilungen. Passarge unterscheidet unter den Randhochländern das Hochland von Südangola, das südwestafrikanische, das kapländische, das Burenland und das südhesiandische Hochland (5).

2. Der geologische Bau.

Dementsprechend besteht Südafrika größtenteils aus sehr alten Gesteinen, aus denen in der Urzeit der Erde entstanden sind, also aufgerichteten altkristallinen Gesteinen der südafrikanischen Primärformation, die das Grundgebirge bilden, und aus Formationen des geologischen Altertums, die es als mehr oder weniger flache Tafeln überlagern. Das mittlere Becken wird von jungen Deckenschichten eingenommen.

Diese drei Strukturtypen: gefalteltes Gebirge, Tafelland und junges Aufschüttungsland finden wir auch in Südwestafrika. Hier besteht die ganze Küstenabflachtung und das Binnenhochland etwa vom Wendekeins nordwärts vorwiegend aus den streif aufgerichteten altkristallinen Gesteinen des Grundgebirges, Fleis, Glimmerschiefer, Granit, Marmor, Quarzit, die nach Nordost bis Ostnordost streichen (Abb. 3, 4). Doch liegen in ziemlich ausgebreiteten Resten Sandsteinlagen, Diabas, Melaphyr- und Porphyredecken darunter, außerdem in nördlichen Herzdolomiten die Dolomiten- und Kalkschichten der Oatformation, die etwa so stark gefaltet sind wie die Schwertler Jura.

Das Windbuckit Hochland in der Mitte des Landes besteht fast ganz aus Glimmerschiefern, nördlich folgt eine Zone von Granit mit Marmor-
Die Deckschichten greifen dementsprechend in drei Buchtten nach Westen in die Randhochländer ein: bei Rehoboth, südlich vom Otako-Hügel und im Ambo-
land. Die Grenze der Deckschichten ist nicht iden-
tisch mit der Grenze der Kalahari, die Passa-
gre mit Recht in die Grenze des Kalaharisandes legt.
Die tieferen Deckschichten reichen im allgemeinen weit über den Kalaharisand hinaus, z. B. geben
ihnen die ganze Weißrandhochfläche an. Doch läßt
sich die Grenze des Kalaharisandes vorläufig nicht
richtig angeben, weil es noch zweifelhaft ist, ob ge-
wisse sandige, in diesen Grenzbieten sehr verbreitete Bodenarten örtliche Verwitterungs- und schwach verfestigte Flugsande sind.

a. Rumpffläche.

Nicht nur auf den steilanhängenden Gesteinen des Nordens, sondern auch im Tatfelland des Namala-
des erkennt man, daß die Oberfläche des Landes die Gesteinsrisse, schneidet, daß also bedeutende Gesteinsmengen abgetragen sind. Die heutige durch diese Abtragung entstandene Oberfläche ist demnach eine Rumpffläche. Sie geht gleichmäßig über Tatelf-
land und Grundgebirge hinweg und taucht im Osten unter die Deckschichten der Kalahari. Die Schotter,
die oft am Abhängen dieser Deckschichten der Rumpffläche anliegen, sind auch ein Beweis für die Entstehung der Rumpffläche durch Abtragung. Zahlreiche Rumpfberge und Rumpflagen berge) zagen als Überreste der Abtragung noch aus der Rumpf-
fläche um, außerdem ist sie nachträglich mehr oder weniger zerteilt. Das hängt nicht, daß das Flachland über das Gebirgsland bei weitem über-
wieg, denn auch die Zerteilung ist vielfach schon bis zur Bildung weiter Rumpfbeden fortgeschritten.

b. Ablagerungen und Höhenverhältnisse.

Mit Ausnahme der Nachbargebiete des Orange
ist das Binnenhochland in Südwestafrika durchweg über 1000 m hoch. Die Neigung der Rumpfhoch-
fläche ist im allgemeinen binnenwärts gerichtet, und entsprechend laufen die Flüsse. Der Hochlandrand bildet die Wasserscheide zwischen den Hochland-
flüssen und den Küstenflüssen. Nur der Orange und der Kavene brechen aus dem Binnenhochland zur Küste durch. Vom Kusib bis zum Haub aber

reichen die Küstenflüsse weiter rücksichtlich aufs Binnenhochland hinauf. Die Wasserscheide liegt
am oberen Swa科普 in den Otjozilbergen östlich von Okahandja, im Quellgebiet des Ugab im Otavi-
land. Die hydrographische Küstenabflachung greift
auf das morphologische Binnenhochland über, dessen westlicher Teil sich hier nach Westen abdacht. Daher
fällt hier auch nicht in einem Steilabsturz zur Küstenabflachung ab, sondern geht allmählich in sie
über. Die Hauptsächlichkeit setzt sich von der Hurihochscheibe am Orange bis zum Otavi-landes im Osten nirgendw unter 475 m herab.

Die binnenswärts zum zentralen Becken Sü-
westafrikas gerichtete Ablagerung der Rumpffläche wird durch zwei ausgedehnte Bodenscheiben, die wir
schon als Vorsprünge der Randhochländer gegen das Aufschießungstand kommandierten, in drei Teil-
abflachen oder Teilbecken gegliedert. Genau in der Mitte von ganz Südwestafrika erhebt sich das Hochland von Windhim. Hier steigt die Rumpf-
fläche, von den darüber emporragenden Inselbergen abgesehen, nahezu 2000 m an. Wie der Bachel
 eines Schiffes übertragen dieses Hochland seine Um-
grenzung, daher bildet es einen Quellknoten, von dem das Flusssystem fast das ganze Land über allen Richtungen ausstrahlt. Das Windhim-Hochland
setzt sich nach Osten fort in eine immer dichter werdende Bodenscheibe, die von Passa
gre als die Oos-Victoria-Schleife bezeichnet wurde (4, 968). Sie schließt die südöstliche Ablagerung nach dem Orange von der nordöstlichen nach dem Okawango. Im Namaland ist daher die Rumpffläche noch Süden abgedacht, sie erreicht in den westlichen Randhoch-
ländern 27 bis 3000 m, bei Windhim fast 2000 m in der Oring, nördlich von Goabos, noch 1600 m und
steigt sich von da auf etwa 1000 m im Süden des Landes.

Eine zweite Bodenscheibe, in der die Rumpf-
fläche meist 1300 bis 1600 m hoch ist, die Rumpf-
berge sich bedeutend höher erheben, folgt der Hauptwasserscheide zwischen dem Otako-Hügel und dem Ugab und setzt sich in das Otavi-land fort. Passa
gre vermutet, daß sie noch weiter reicht und vom Okawango in der Kataraktenzone von Andara, vom Zsemi in der Kataraktenzone von Gorje durchbrochen wird, doch ist sie dort jeden-
falls sehr flach (4, 963). Sie trennt das Gebiet des Otakoberges vom Etonshabekken. Nur im west-
lchen Teil schiebt sich der Oberlauf des Ugab noch darunter ein.

Das Etonshabekken ist das einzige von den
Becken der Kalahari, dessen Zentrum, die Etonshab-
ekfläche, innerhalb Südwestafrikas liegt. Daher zeigt
sich das Land im Norden von allen Seiten zu

c. Die Inselsberge.

Das Otavigeländ (2150 m, Abb. 6), der Waterberg (1857 m), die Parembenge (1888 m), der höchste Berg von Südwestafrika, der Brandberg (2640 m), der schon der Küstenabdachung angehört, das Etschgebirge (2500 m), der Etjo (1986 m), der Omatako (2280 m), welcher früher als der höchste Berg galt, und viele andere sind solche Überreste der Abtragung. Ein bedeutendes Rumpfgebirge, dem es an einem zusammenfassenden Namen fehlt, ist das Bergland an der Wasserscheide zwischen dem Khan und dem Swakop (Otjipataberge, 1910 m), das sich in der Stichrichtung des Gesteines nach Südwest bis weit in die Küstenabdachung hinein erstreckt.

Dagegen das Khotmaishochland, die Etschberge, die Onjatberge und wie die verschiedenen Teile des Windruker Hochlandes alle heben mögen, sind keine Abtragungsreste, sondern hochstehende Teile der Rumpfplatte, die erst nachträglich zu Gebirgen zerschnitten sind. Auch aus diesen höchsten Teile der Rumpfplatte erheben sich noch viele Inselberge, z. B. das Aussegerge zu 2483 m, die Bergegruppe der Nuasheiger-Kleinberge zu 2070 m, der Gamsberg zu 2331 m.

Aus den Taglichichten des Namalandes ragen nur vereinzelt Erhebungs über die Rumpfplatte empor, nämlich die großen Karrasberge (2502 m) oder große Teile ihrer Umgebung, die kleinen Karrasberge (1900 m), der große Brukaros (1980 m), der Rosberg (1837 m). Die höchsten Teile des Naukluftgebirges (1975 m) dürfen dazu gehören. Das sind wahrscheinlich alle.

d. Das Gletscherschutzgebiet.

a. Allgemeines.

Ein Land von 1000 bis 2000 m Meereshöhe in wenigen hundert Kilometern Küstenabstand müßte in einem feuchten Klima überschaup stark zerriss und gebirgig sein. Wohl hat auch Südwestafrika wil...

b. Nördliches Namaland.

Weiter östlich trennt die Fischflusssenke die Schwarzrandhochfläche von der Weißrandhochfläche. Die Fischflusssenke ist eine recht ebene Fläche, beim Bahnhof Magambithal 1098 m, im Süden bei Bahnhof Blaurevier 942 m hoch. Im Norden geht sie sich, dem Fischfluss und seinem Nebenfluss, dem Lebenfluss folgend. Die beiden Teile sind durch die Fischflusssenke getrennt. Aus der Fischflusssenke ragt der große Brakaras auf und bildet eine Landmarke, die auf mehr als 200 km im Umkreis zu

c. Südfliches Namaland.

d. Hererosland.

5. Der Steilabfall.

Das Binnen hochland fällt in einem mächtigen Steilabsturz zu der schiefen Ebene der Küstenabflachung ab (Abb. 4, 3). Da die Randgebiete des Binnen hochlandes meist sehr hoch liegen, so erreicht auch der Steilabfall eine bedeutende relative Höhe, obwohl die Küstenabflachung an seinem Fuße bei ihrem starken Anstieg von der See her schon 1000 bis 1300 m hoch ist. Dementsprechend ist der Steilrand von den küstenwärts gehenden Flüssen gewaltig zerschnitten. Wir finden hier am Rande des Binnen hochlandes die großartigsten und wüstensten Gebirgslandschaften, besonders wo noch mächtige Inselberge des Hochlandes von der Zentralabflachung erreicht werden, wie z. B. am Gamsberg. Da diese Gebirge außerdem im Westen an die Nambwügte folgen.
angreifen, gehören sie zu den unangefochtene[n] Gebieten und dienen vielmehr als Zufahrt für Einbor[ne], die sich der Herrschaft der Gewöhn zu entziehen wüs[sen]. Wir trafen hier kleine Volksresten, die noch in alter Ursprün[glichkeit leben. Die Hand gedeiht, das Grundh[auf], das Grundh[au], den Bereich der Polizei zu meiden.

6. Die Küstenabflachung.

Vom Fuße des Steilaufalls neigt sich die Küstenabflachung zum Meere hin. Sie ist eine schiefle Ebene, in der Hauptsache eine aus alkristallinen Gesteinen aufgehäuptete Rumpelbene, aus der bedeutende Inselberge aufragen, und die von den Küstenfelsen in tiefe Entwässerung zerwirft ist (Abb. 3). Die Neigung ist sehr gleichmäßig und beträgt etwa 1:100. Ob wir von Lüdelitzschacht oder von Swakopmund landeinwärts gehen, stets müssen wir auf niedrigere Höhe einen Meter ansteigen. Auf der Strecke Swakopmund—Ehoni der Ostasiabahn erhält man ziemlich genau die Meereshöhe, wenn man die Kilometerzahl mit 10 multipliziert. Ein Vergleich mit Deutschland macht uns klar, wie rasch das Land binnemwärts ansteigt. In Deutschland kann man bis München fahren, 670 km Luftlinie von der Elbhämecke, und befindet sich erst in 350 m, oder bis Oppeln, 420 km von der pommerischen Küste, und hat erst 148 m erreicht. Würde Deutschland so ansteigen wie die südwestafrikanische Küstenabflachung, so müße Hamburg schon 11000 m Meereshöhe liegen.

Der Geologe der Deutschen Kolonial-Gesellschaft, Dr. Runing, hat mannigfaltige Anhaltspunkte dafür gefunden, daß die Küstenabflachung bis etwa 1050 m vom Meere bedeckt gewesen ist, und daß sie ihre heutige Form durch die abholende Arbeit der Brandungswelle erhalten hat. Der Steilaufabfall des Binnenhochlandes mag ursprünglich das Kliff gewesen sein, das die Brandung beim höchsten Stand des Meeres gebildet hat, wenn er auch heute nachträglich verschüttet, ausgebuchtet und zurückgelegt ist. Die Inselberge sind, wenn diese Auffassung richtig ist, ein wirkliches Inselnis gewesen.

Dem Steilabfall des Binnenhochlandes sind vielfach mächtige Berginseln vorgelagert, die ursprünglich jedenfalls mit ihnen zusammengehängen haben. Erwähnt seien die Witwaterberge (1863 m) vor dem Khomas hochland, das Nubieldgebirge vor der Taris hochfläche, der große Tigerberg oder dicke Wilhelm (1510 m), der große Löwenberg und das Granitgebirge von Aus (etwa 1600 m) an der Bahnstrecke Lüderitzbucht–Keetmanshoop.

Durch verschiedenartige nachträgliche Umformungen hat die Küstenabdrängung in ihren einzelnen Teilen ganz verschiedenen Charakter angenommen. In einem küstennahen Streifen südlich von Lüderitzbucht, der klimatisch durch befälige Südwind ausgezeichnet ist, hat der Wind das Land umgeformt und, wie E. Kaiser nachweis, bis 100 m tiefe, rings umschlossene Becken darin ausgehölt (204).

Die Ebenen, die Inselberge, die Dünen und die Schluchten, das sind die vier Formelemente, die die Küstenabdrängung zusammensetzen.

7. Die Küste.

Von Swakopmund bis zur Kunenezümmung besteht die Küste aus einer kaum durch Vorsprünge unterbrochenen Folge verlandeter Lagunen, von denen eine bei Swakopmund als Salzlagere ausgebeutet wird. Nur auf dem Ebbestrand tritt stellenweise der Fels zutage.

Drittes Kapitel.

Das Wasser.

1. Die Grundlagen: Klima und Boden.

Es seien zunächst die wichtigsten klimatischen Tatsachen erwähnt, welche die Wasserzufuhr durch Regen und den Wasserabfluß durch Verdunstung bestimmen.

Die jährliche Regenmenge nimmt in Südafrika von West nach Ost und von Nord nach Nord zu. Im Westen befindet sich das so gut wie regenlose Gebiet der Namib, im Süden am Orange ein sehr regenarmes Gebiet von kaum 100 mm Niederschlag. Der allgemeine Zunahme entsprechend haben wir in der Windhuker Gegend 300 bis 400 mm, in der Groothoaner Gegend 600 mm jährlichen Niederschlag.

Die Regen fallen im Sommerhalbjahr, etwa vom Oktober bis April, hauptsächlich von Dezember bis März. Die Winterregen, die in der Südwüste noch in das Gebiet hineinreichen, liefern nur geringe Regenmengen. Gewöhnlich fallen die Regen in hohem Grade, die meist von Blitz und Donner begleitet sind.

Die Regen fallen nach Menge, örtlicher und zeitlicher Verteilung sehr unregelmäßig. Die angegebene Menge und Verteilung gilt nur für den Durchschnitt der Jahre. In vielen Jahren bleibt die Regenmenge weit unter dem Durchschnitt, in anderen übertreffen sie ihn. Die bisher beobachteten Extremen der jährlichen Regenmengen betrug z.B. in Kühls an der Sibab 33,6 mm (1907/08) und 169,3 mm (1910/11), in Windhuk 184,9 mm (1901/02) und 756,7 mm (1908/09), in Omapuru 63,3 mm (1910/11) und 360,8 mm (1908/09), in Gobu im Ovamboland 215,6 mm (1907/11) und 1015,7 mm (1908/09) (30). Wochenlänge, ja monatslange Trockenheit kann auch im Sommerhalbjahr den Regenfall unterbrechen. Dadurch, daß gleichzeitig in einem Landesteil eine gute, in einem anderen eine schlechte Regenzeit eintritt, weicht auch die räumliche Verteilung des Regens oft gänzlich ab von dem Durchschnittsbilde, das die Regenmengen geben. Sehr häufig sind Strichregen von ungebener Ausdehnung. Daher erhalten selbst unmittelbar benach-
barte Plätze, auch bei gleichen topographischen Verhältnissen, oftmals ganz verschiedenen Regenfall. Ein Jahr kann für eine Farm ein gutes Regenjahr, für die wenige Kilometer entfernte Nachbarfarm ein sehr schlechtes sein.

Die Verdunstung in dem trockenen und warmen Klima ist bedeutend, die Tabelle gibt die Hauptergebnisse der spätrlichen bisherigen Messungen

<table>
<thead>
<tr>
<th>Ort</th>
<th>Beobachtungszeit</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Haua (Khomas Hochland)</td>
<td>April 1909 bis Februar 1910</td>
<td>3.84</td>
<td>6.8</td>
<td>2.3</td>
<td>1.44</td>
</tr>
<tr>
<td>2. Kuibis (Südostbahn)</td>
<td>Oktober 1911 bis September 1912</td>
<td>5.2</td>
<td>9</td>
<td>4.5</td>
<td>1.64</td>
</tr>
<tr>
<td>3. Haua</td>
<td>April 1909 bis Januar 1910</td>
<td>10.5</td>
<td>18.9</td>
<td>6.4</td>
<td>3.80</td>
</tr>
</tbody>
</table>

(1. und 2. mit geschätzten Verdunstungsmessern, 3. und 4. an ungeschützten Gefäßen; 1. und 3. aus den Akten der Deutschen Farmgesellschaft, 2. aus R a n g e, Beiträge zur Landeskunde des Deutschen Namalandes (6), 4. aus R e h b o c k, Deutsch-Südwestafrika (21); a, b und c durchschnittliche tägliche Verdunstung in Millimeter; a Jahresdurchschnitt, b Durchschnitt des Monats mit größter, c mit kleinerer Verdunstung, d Gesamtverdunstung im Jahre in Metern.)

Das Minimum der Verdunstung fällt gewöhnlich in die kühlen Monate Juni, Juli, das Maximum in die heiße Zeit vor dem Einsetzen der Regen oder auch in längere Regenpausen, also je nachdem in den November, Dezember oder Januar.

II. Oberflächenwasser.

Das auf den Boden auffallende Regenwasser erleidet verschiedene Schicksale. Ein Teil verdunstet, ein Teil sickert ein, was übrig bleibt, fließt oberflächlich ab.

a. Die Verdunstung

Des Wassers erfolgt teils unmittelbar während des oberflächlichen Fließens, teils aus offenen Wasserbecken, teils aus feuchtem Boden. Die Verdunstung aus offenen Wasserflächen ist an Vleys und Bauweihern leicht zu messen, sofern es kein Wasser durchsickern lassen und anderweitig nicht wesentlich beansprucht werden. Es sind aber nur sehr wenige Messungen darüber vorhanden. In einem aufgestauten Vley auf Fares Gießenshöhne (Bezirk Okahandja), in dem kein Wasser durchsickert und das so gut wie gar nicht zum Tränken benutzt wurde, wurden 1917 folgende Wassertiefen gemessen:

Höchster Wasserstand 1.88 m; am Ende der Regenzeit, etwa 1. April 1.85 m; 17. Juli 1.29 m; 3. August 1.19 m; 18. August 1.10 m; 31. August 1.02 m; 16. September 0.90 m; 27. Oktober 0.30 m; 17. November leer.

Die Verdunstungshöhe beträgt also in den Wintermonaten 15 bis 20 cm monatlich.

Daß die Austrocknung des Bodens durch direkte Verdunstung und den Verbrauch der Pflanzen sehr stark ist, weiß jeder Farmer, der einmal auf Regenfall etwas angebaut hat. Auf Farm Davenis bei Khorab wurde in dem leichten lehmigen Sandboden des Ackers, wo doch durch die Bodenbearbeitung die Verdunstung künstlich vermindert war, folgendes beobachtet:

Mitte Februar 1913, nachdem 472 mm Regen gefallen waren, war der Boden über 2 m tief durch-
feuchtet. Bei 2 m tiefen Graben wurde die Grenze des feuchten Bodens nicht erreicht. Dann fiel vier Wochen kein Regen und die Luft war sehr trocken. Danach war der Boden noch 1 m tief feucht. Die aufgegriFFE 8 bis 15 cm dicke Oberschicht trocknet naturgemäß sofort ab, schrumpft aber den tiefen Boden gegen Austrocknung, da sie das kapillare Aufsteigen des Wassers verhindert. Danach füllen 16 mm und in den nächsten sechs Wochen wöchentl. ein Plätze regen von etwa 5 mm, zusammen 25 mm. Danach war Ende April die obere Trocken-

b. Einsicker.

c. Abfuß.

Wenn sowiel Regen fällt, daß er nicht vollständig einsickert oder verdunstet, fließt das Regenwasser oberflächlich ab (Abb. 11). Bei starken Güssen füllen sich die Poren des Bodens rasch derart mit Wasser, daß der Boden so gut wie undurchlässig wird und das ferner herabreichende Wasser nicht nur in einzelnen Rinnsalen, sondern über die ganze Fläche hin abfließt als sogenannte Schichtflut, aus der Steine, Grasbüschel, Sträucher usw. als Insekten herausragen. So fließen auch außerhalb der Flüßbetten in kurzer Zeit gewaltige Wassermassen ab, die oft verheerend wirken. Zerstörungen des Bahnkörpers durch solche Flüßfluten pflegen in Südwestafrika jedes Jahr mehrfach vorzukommen.

Das abfließende Wasser sammelt sich in oberflächlichen Vertiefungen zu Tümpeln, oder strömt in Flüßbetten zu Tal.

Welcher Bruchteil des gefallenen Regens ab-

nen, dessen Einzugsgebiet 50 qkm beträgt, fließt ab:

<table>
<thead>
<tr>
<th>Regenjahr</th>
<th>Regen</th>
<th>Abfuß</th>
<th>Abfuß zu Niederschlag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1912/13</td>
<td>250</td>
<td>600000</td>
<td>11,2:5</td>
</tr>
<tr>
<td>1913/14</td>
<td>270</td>
<td>1200000</td>
<td>11,1:5</td>
</tr>
</tbody>
</table>

Wenn wir nun das ganze Jahres das von einem einzelnen starken Regenfall abfließende Wasser betrachten, so dürfte das Verhältnis noch größer werden.

Im Februar 1913 gingen auf Farm Vogtgrund ein Regen von 62 mm nieder; der noch unverdünnte Standsam, der damals 4 Millionen Kubikmeter hatte, fiel sich in drei Stunden aus einem Einzugsgebiet von reichlich 500 qkm. Wenn wir annehmen, daß der Regenfall im Einzugsgebiet selbst gewesen sei wie bei dem außerhalb liegenden Farmtum, so fiel in drei Stunden ein Achtel des Regenfalls ab. Wieviel nach diesem drei Stunden noch floß, wurde nicht gemessen.

2. Stehende Wasseransammlungen.

3. Die Flüsse.

a. Die vier Abduシェ方.

Der Oberflächengestaltz des Landes entsprechen, dessen bedeutendste Erhebung in der Mitte, um Windhok herum liegt, stellt das Wasser auf vier verschiedenen Abduシェ方ern ab, deren Wasserteichen auf der Karte eingezeichnet sind. Die vier Abduシェ方ern sind: die westliche nach dem Atlantischen Ozean, die südliche nach dem Orange, die östliche nach der Kabahari und die Abduシェ方ung zum Becken der Etochapanke.

b. Fluシェタイプ.

Die anderen FluシェSber und Talsperren sind trocken bis auf die meist kurzen Zeiten, wo sie „abkommen“. Diese Flussläufe haben ein sehr viel stärkeres Gefühl als die dauernden Flüsse. Das Gefühl des Swaop von Osun bis zum Meer auf 321 km Laufstrecke beträgt 307 m. Das Gefühl des Mains auf der gleich langen Strecke von Schwarzhart bis Mains beträgt 133 m. Das große Gefühl des Swaop beruht zum kleinsten Teil dadurch, daß es sehr leicht beschleunigtes Flüß mit nennenswert gleichmäßigem Gefühl. Ein periodischer Flüß braucht ein größeres Gefühl als ein dauernder, da er beim Abkommen außerordentlich viel Schmut transportieren muß und dann eine gewaltige Stoシェkraft benötigt.

Unter diesen trockenen Flüßläufen gibt es zwei Typen, die so auffallend verschieden sind, daß sie auch im Sprachgebrauch unterschieden werden: Riviere und Omuramba.

langsamer, überdies behindert durch die Vegetation, die er nicht wegreißen kann. Den mitgeführtten Lehm setzt er beim Trocknen und Verwicken wieder ab. Wenn Riviere längere Zeit nicht oder nicht stark abgekommen sind, so siedelt sich die Vegetation auch im Flußbett an, wie wir es am untersten Swakop gesehen haben und auch am obersten Swakop im Trockenjahr 1936. Das Flußbett würde zum Omuramba, wenn nicht gelegentlich eine starke Flut alle Vegetation wieder wegrisse.

Natürlich kommt es dabei nicht auf das absolute Gefälle an, sondern auf das Gefälle im Verhältnis zur Wasserzuleitung. Ein kleiner Fluß braucht mehr Gefälle als ein großer. Er wird daher Omurambacharakter haben, bei einem Gefälle, bei dem ein großer unbedingt Rivier sein würde. In den Quellgebieten von Flüssen kann man ein ziemliches Gefälle auch an Omurambas beobachten. Liegen die obersten Flußarme in Gebirgen, so sind sie stets felsige Riviere, liegen sie in Rumpelflächen, so sind sie oft Omurambas. Es kommt vor, daß sie weiter unten zu einem Rivier werden, obwohl das Gefälle abgenommen hat. Aber nur dann, wenn auf der Zwischenstrecke durch Vereinigung verschiedener Arme die gewöhnlich abkommende Wassermenge erheblich größer geworden ist.

Auch die Bodenbeschaffenheit beeinflußt die Wassermenge und damit den Charakter des Flüßlaufs. In den Sand- und Kalkgebieten, wo sehr viel Wasser versinkt und wenig abfließt, sind selbst stark geneigte Flußläufe Omurambas. 2. B. im Otavi-Gebirge.

Folgerungen:
1. Eine wesentliche Änderung der im Durchschnitt der Jahre abkommenden Wassermengen muß den Flußcharakter verändern.
2. Eine wesentliche Veränderung des Gefälles muß den Flußcharakter verändern.
3. Omurambaflüsse können nicht in die Tiefe erodieren.
4. Wenn ein Omuramba in einem Tale hinzieht, so müssen wir schließen, daß der Fluß, als er das Tal erodiert hat, nicht Omuramba, sondern Rivier war. Daraus geht aber nicht hervor, daß die Wasserzuleitung größer gewesen sein muß. Durch das Erscheinen des Tales hat ja das Gefälle allmählich abgenommen, und das ist wohl meistens eine hinreichende Ursache, um das Rivier in einen Omuramba zu verwandeln.

Übervegetation.

In einem so trockenen Lande wie Südwest-Afrika, wo die Vegetation im allgemeinen sich nur dürftig entfaltet kann, sind die Flüsse mit ihrem Grundwasser die Linien üppigerer Pflanzenlebens. Flüsse mit dauerndem Grundwasser haben an den Ufern reichen Baumwuchs, bei größerer Ausdehnung des grundwasserhaltigen Schwemmlandes sogar Uferwald. Als dunkle Baumstreifen schlängeln sie sich durch die dünne Landschaft. Die häufigsten Uferbäume grundwasserreicher Flußbetten sind die Weißdorn-Akazie (Acacia horrida), das Ebenholz (Euclea pseudoebena), die weidenähnliche Rhus lancea, Zizyphus mucronatus und in den frostfreien Tälern der Küstenflüsse der stämmige Anabau (Acacia albida, Abb. 3).

Auch wenn kein dauerndes Grundwasser vorhanden ist, sind die Flüsse immerhin die Stellen des größten Wasserreichtums und daher des stärksten Wachstums. Wir finden dann an den Ufern den Kameldornbaum, Acacia giraffae, der selbst in Flußbetten der Wüste noch anzutreffen ist. Die kleinen Flußbetten der Wüste, die nicht aus dem Binnenland Grundwasser mitbringen, sind mit niedrigen Büschen verschiedener Wüstenpflanzen bestanden, durch die sie sich von der kahlen Fläche abheben.

c. Das Abkomen.

In guten Regenjahren fallen große Flüsse wiederholt und monatelang, fast die ganze Regenzeit hindurch, aber in sehr wechselnder Stärke.

Wenn größere Flüsse stark abkommern, so gelangt das Wasser auch in Gegenen, in denen es gar nicht geregnet hat. Die Küstenflüsse Kusseb, Swakop, Omururu, Ugab, Huab, Hoanib, Hoarusib fließen weit in die Namibwüste hinein und in guten Regenjahren durch sie hindurch ins Meer.

Das im Fluß zu Tal strömende Regenwasser ist eine trübe, schlammige Brühe, deren Farbe vom Boden des Einzugsgebietes abhängt, meist wohl tiefer schokoladenbraun ist. Größere Flüsse werden bei längerem Fließen allmählich klar. Das Wasser, das beim Hochwasser in das Schwarzwasser eingedrunken ist, und darin gefärbt wurde, fließt auseinander und erhält den Fluss noch am Fließen, auch wenn kein unmittelbar ablaufendes Regenwasser mehr vorhanden ist.

So gegenreich das Abkommern der Flüsse für den Wasserhaushalt des Landes ist, sie können dabei auch beträchtlichen Schaden anrichten. Sie unterspülen die Ufer und reißen die auf dem Landeslande liegenden Felder und Gärten, ja sogar Gebäude weg (Abb. 17). Der Leberfluß fließt im März 1918 das Wohnhaus der Farm Kabels weg und eine Däne, die aus der Flut aufkratzt und auf die die Bewohner sich geflüchtet hatten, so daß mehrere ertranken.

Der Osten und Norden dagegen, die regenreichsten Landesteile, haben nur vereinzelte Flußbetten, und nur einzahlsweise kommen diese auf kurze Strecken zum Fließen. Das dichte Gras der kleinen Regenrinnen fehlt völlig, es sind abflußlos, ja geradezu flusslose Landschaften. Ob sie zum Meer entwässern werden oder nicht, ob sie abflußlos im gewöhnlichen Sinne sind, hat mit dem reichen oder spärlichen Abfluß nicht das geringste zu tun. Die wenigen Flußläufe, die hier weite Strecken

Der westliche, ins Kasugebiet eingegründete Teil des großen Kalkegebietes der Otaviformation gehört nicht mehr zum flußlosen Gebiete, sondern hat zahlreiche Riviere. Das liegt vermutlich daran, daß hier außer Kalken vielfach quartärzeitliche Sandsteine auftreten, sowie an dem besonders starken Gefälle in diesem Gebiete, welches 120 km von der Küste noch 1000 bis 1500 m hoch ist. Der Okan- gumbofluß, ein Nebenfluß des Oshamb, überwindet in kaum 100 km langem Lauf 1'100 m Gefälle.

Innerhalb des abflußarmen Gebietes kommen einige Inseln mit reichlichem Abfluß vor, an Stellen, wo undurchlässige Gesteine den Sand oder den Kalk durchbrachen.

Südlich Hausau treten innerhalb der Kalahari- dünem die Schichten der Namaf ormation zutage, da- her ist hier ein inselartiges Gebiet mit Flüssen.

Bei Hoachams tritt der Melaphyr auf größere Erstreckung zutage und bildet ein abflußreiches Gebiet. Der oberste Ausfluß ist daher ein Fluß, der häufiger abkommt.

Im Otaviiberland verursachen der Granit im Quellgebiet des Omuruma von Awagobh und der Sandstein am Omumumba Omhunje, daß diese beiden Fläche abkommnen.

III. Grundwasser und Quellen.

A. Die räumliche Verteilung des Grundwassers.

Eine Stelle, wo das Grundwasser ausfließt, heißt eine Quelle; eine Stelle, wo infolge einer Einsenkung des Bodens ein Grundwasserspiegel an der Ober-
flache sichtbar wird, heilt ein Grundwassersee. Im Lände hört man vielfach die Ansicht, wenn man nur tief genug bohre, müsse man überall Grundwasser finden. Das ist durchaus falsch. Die Verteilung des Grundwassers ist viel inniger als die des Oberflächenwassers vom geologischen Ban abhängig, nämlich von der Verbreitung durchlässiger und un-
durchlässiger Schichten sowie vom Vorhandensein von Klüften und Gängen.

Je nach der Beschaffenheit des „Wasserträgers“, d. h. des wasserführenden Gesteins, sind zwei Arten von Grundwasser wohl zu unterscheiden, das Grund-
wasser in lockeren Schwemmland und das Grund-
wasser in festem Fels (23).

![Diagram](image)

Fig. 1: Schematisches Längsprofil durch ein Grundwasser führendes Flusbett, stark überhöht.

Das Schwemmlandgrundwasser ist im allgemeinen „offenes“ Grundwasser, d. h. es füllt den Wasserträger nur zum Teil an und stellt sich darin, soweit die Reibung es gestattet, wagsrecht ein, wie in einem See oder einem Fluss. Das Felsgrund-
wasser dagegen ist sehr oft „bedecktes“ oder „arte-
sisches“ Grundwasser, d. h. es ist zwischen undurch-
lässigen Gesteinen wie in einer Röhre eingeschlos-
nen und nimmt deshalb ganz die Form der Röhre an und steht unter Druck, so daß es ansteigt, wenn man den Wasserkörper künstlich anhebt (24.15). Falls der Wasserkörper an einer Stelle höher liegt als der Ansatzpunkt des Bohrtisches, so sprudelt das Wasser aus diesem offen aus.

1. Schwemmlandgrundwasser.

In den Schwemmländern der Flüsse, wenigstens der Rivoire, ist meistens Grundwasser in geringer Tiefe vorhanden. Es ist von der größten wirt-
lauflichen Bedeutung, da die Mehrzahl der Brun-
nen des Landes aus Flusbettten und Talauen solches Grundwasser schöpft.

2. Beschaffenheit des Talbodens.

Der Felsuntergrund der Flussanschwellungen hat selbstverständlich im großen ganzen ein gleich-
linniges Gefälle talabwärts. Das scheint aber nicht aus, daß er im einzelnen flache, vom Fluß aus-
waschene Becken enthält, die durch Felschwelen getrennt sind und treppenartig aufeinanderfolgen (Fig. 1).

Die Felschwelen liegen gewöhnlich da, wo ein etwas härteres Gestein das Flußbett quert (Abb. 14). Sie fallen daher oft mit Talengen zusammen. Die Becken aber liegen in weicheren Gesteinen und in Taleinwölbungen. Sie sind am Flusshügel bei Hannover näher beobachtet worden, däres aber keines Ri-

vier ganz fehlen. Die Talsohlen sind in der Regel mit mehr oder weniger mächtigen Flussanschwe-
mungen erfüllt, welche die Unerregelmäßigkeiten des Felsbodens verdecken. Da und dort ragt noch ein Felsbügel aus der Talsohle auf, oder eine unter-
irdische Felschwelle durchzieht die Alluvien. Nur in den obersten gebirgigen Flussläufen pflegen Tal-
auen zu fehlen. Das Flußbett ist ganz in Fels ein-
gegraben; meist selbst felsig, oft auch zwischen den Felsen mit Sand erfüllt, ohne jedoch eine breitere Talause zu besitzen, die bei geringerem Gefälle meist sehr ausgeprägt ist.

Die Alluvien der Talauen sind von sehr wech-
selnder Beschaffenheit; grobe oder feinere Schotter wechseln in wagnerrechter oder senkrecht er Richtung unregelmäßig mit größeren oder feineren Sanden und mit tonigen Schichten. Eine gewisse Regel-
mäßigkeit besteht nur darin, daß die tiefsten Schich-
ten meist größere Schotter sind, daß die Oberfläche der Talause meist aus feinem Lehm oder Ton besteht, das eigentliche Flußbett aber gewöhnlich grüberen Sand führt. Das erklärt sich ja leicht aus
den verschiedenen Bedingungen des Abfusses. Sie lagen der Fluss noch über Felsboden hinströmte, würde er reibender sein, als nachdem er durch Aufschüttung sein Bett verbreitert und das Gefälle vermindert hatte. Im Flussbett ist das abkommende Wasser zusammengefaßt als Strom, der Gerölle und Sand mitführt. Breitet sich das aber über die Tal-

b. Stehendes Grundwasser in Becken des Flussbettes.

In den vom Schwemmbrand verhüllten Fels-

becken der Talsohle sammelt sich das Grundwasser und kann in ihnen ergraben werden. Manchmal ist auch der Grundwasserspiegel an tieferen Stellen des Flussbettes sichtbar, z. B. häufig im Fischnuß (Abb. 15). Will man ein solches Grundwasser-

becken voll ausschütten, so muß man den Brunnen

an der tiefsten Stelle des Beckens anlegen, wie es in Hannover geschehen ist. Wenn das Becken er-

schöpft ist, so kann es keinen Erfolg haben, den

Brunnen zu vertiefen, sofern der Felsgrund unver-

lässig ist. Anders am sehr zerklüfteten Gestein,

wie den Glimmerschiefern der Landesmitte. Da drängt das Grundwasser aus den Flutanschwem-

mungen in die Klüfte des Gesteins. Die

zunächst unter dem Schwemmbrand liegenden

Gesteinspartien sind somit auch ein Stück Schwemmbrand. Deshalb könnte man z. B. in

Ohalandia die Brunnen mit gutem Erfolg in den

Glimmerschiefer vertiefen. Je weiter man sich aber vom Flussbett entfernt, und je tiefer man geht, desto weniger offene Klüfte sind vorhanden, desto ge-

röhrer ist der Grundwasserzufluß, desto weniger

sättigt die Vertiefung. Durch das beim Abklingen

des Flusses versickernde Wasser werden die Becken wieder neu gespeist.

c. Grundwassersstrom.

Ist beim Abklingen mehr Wasser im Schwemm-

brand eingesickert, als zur Auffüllung der Becken erforderlich ist, so geht das überschüssige Wasser als Grundwassersstrom zu Tal, der kürzere oder längere Zeit nach dem Abklingen andauert.

Ein kräftiger Grundwassersstrom führt das Schwemmbrand bis zu einer gewissen Höhe an. Seine Oberfläche hat etwa das nämliche Gefälle wie das Flußbett und das Schwemmbrand. Man wird also den Grundwasserspiegel überall in etwa gleicher Tiefe ergraben können. Nimmt die Wassermenge ab, so sinkt der Grundwasserspiegel zugleich, am wenigsten an den Felschluchten und dicht oberhalb von ihnen, wo er durch die Schwellen in bestimmter Höhe festgehalten wird, am stärksten am oberen Ende größerer Becken. Hier müssen daher die Brunnen am tiefsten sein und zeigen die größten Schwankungen (Fig. 7). Höhrt der Grundwasser-

strom ganz auf, so zerfällt das Grundwasser des Flusses in eine Reihe stufenförmig angedeuteter Wasserbecken mit genau wagemrecht erklärt. Aber schon vor dem völligen Aufhören des Grundwasserzuflusses tritt dieses stufenförmige Gefälle des Grundwassers ein. Die einzelnen Becken sind dann noch durch einen schwachen Grundwassers-

strom verbunden, der am Grunde der Ans-

chwemmungen über die Felschluchten hinab-

flossen oder auch durch Felskluft hindurchgeht. Auch die offenen Wasserbecken in den Kolken der Gebirgsflüsse werden oft von einem solchen Grund-

wassersstrum gespeist. Wenn es nicht einfließt über die Felschluchten staut, läßt sich der Zufluß nur durch Wasserbecken in den Kolken der Nebenflüsse aber noch an ihren Strömen oder am Überfließenden beobachtet. Die so genannten Bergwasserbecken, die sich in der noch in den höchsten Steilflüßen, wo sie wegen der Verhältnisse oder des Viehverbaus mitteln. Das habe ich im Kromashochlande an vielen Kol-

ken beobachtet.

An der Eisenbahnbrücke von Ootna hat Ingemein v. Zwergern die Stärke des Grund-

Nur bei wenigen größerer Flüssen hält ein kräftiger Grundwassersstrom auch in sechsstündigen Regenjahren dauernd durch. Ob ein dauernder Grundwassersstrom vorhanden ist oder nicht, ist für die Verwendung des Wassers von größter Bedeutung. Das ist aber nicht ohne ge-

nannte Beobachtungen festzustellen. Die man am

Futterhütten, nicht zahlreiche eigene Brunnen vorhanden sein ohne dauernden Grundwasser-

strom. Wird das Wasser eines Beckens nicht mehr durch Zuströme ergänzt, so gibt sich dies durch

stärkeres Sinken des Grundwasserspiegels beim Verbrauch zu erkennen.

Range hält es für wahrscheinlicher, daß dieses Wasser durch Kondensation und Nebelbildung im Dünenwölbchen selbst entsteht (26, 517). Dagegen spricht, daß das Wasser nicht überall am Dünenrande austritt, sondern nur in Schwebemärchen vorhanden ist, die in der Verlängerung der Flußbetten liegen. Der Nebelregen durchfeuchtet den Sand nur wenige Zentimeter tief, und rasch trocknet er wieder.

6. Omuramben.

In den lehmigen Talboden der Omuramben sind die Grundwasserverhältnisse viel ungünstiger. Sehr oft haben sie gar kein Grundwasser, oder es liegt sehr tief. Stellen, wo es flach liegt, wie in einem Rivier, sind seltener. Ein Grundwasserstrom scheint nur selten und auf kürzeren Strecken vorhanden zu sein. Als Beispiel sei der Omuramba Ondengaure angeführt, ein linker Nebenfluß des Omuramba u Omatako. Die Angaben darüber verdanke ich Herrn Bezirksamtmann v. Zastrow. 8 bis 10 km oberhalb Omaongoshe, also etwa 35 km vom Ursprung, wurde an zwei Stellen im Omuramba Oendangaure 40 m tief gebohrt, ohne Erfolg. In Omaongoshe liegt der Wasserspiegel im Brun-
nen wohl 18 m tief. Weiter unterhalb wurde auf einer Strecke von etwa 30 km kein Wasser im Omu-
ramba gefunden. Dann auf Farm Ondengaura ist ganz flaches Grundwasser vorhanden. Der Brun-
en von Lyresse an der oberen Grenze der Farm hatte folgendes Profil: 1 m schwarzer humoser Boden, darunter etwa 2 m grauer Sand, darunter lockerer roter Sand, Wasser in etwa 5 m. In Prions Brun-
en, etwas weiter unterhalb, steht das Wasser noch flacher. Unterhalb Ondengaura mündet von rechts der Omuramba Omambonde ein. Er hat in Omam-
bonde, 4 km oberhalb seiner Mündung, dauernd offenes Wasser; an der Mündung steht das Grund-
wasser in 8 m Tiefe. 8 km unterhalb, im Omambondetail, steht das Grundwasser im Omuramba Od-
genaura auf etwa 25 m, weiter unterhalb verschwindet es ganz. Leider sind die Wasserverhäl-
nisse der Omuramben noch sehr wenig erforscht.

e. Aufschüttungsgebiet des Omunza.

Das Aufschüttungsgebiet des Omunza ist, im ganzen betrachtet, ein großes Schwemmeland, das nach den vorliegenden Befunden gegen 100 m Tiefe erreicht. Äußerlich durch die große Tiefe und wargerechte Ausdehnung unterscheidet es sich von den Flusschwemmlandern durch den Aufbau. Durch-
lässiger Gestein, wie loser Sand, sandiger Lehme, poröser Sandstein, lockere oder wenig verfestigte Kalkgeröll und Kalkkonkretionen wechseln mit un durchlässigem Gesteinen, wie Ton, massiven Kalcbänken von oft großer Mächtigkeit, Kalkmergel. Auch die Unterlage der Aufschüttungen, das Grund-
gebirge, ist bisweilen so durchlässig — z. B. in den klüftigen und an Quarzgängen reichen Glimmer-
schiefern im Gebiete des obersten Epukiro —, daß es hydrographisch als Teil des Schwemmlandes an-
rühren ist.

Infolge von Wechslagerung durchlässig und un durchlässig Schichten kommt das Grundwasser oft in mehreren über einanderliegenden Stockwerken vor. Wo mächtige Kalkablagerungen die Deck-
schichten bilden, findet sich Grundwasser in tiefen Klüften und Höhlen. In diesen Fällen steht es unter Druck und steigt in den Bohlöchern beträchtlich in die Höhe. Wir werden dieses Grund-
wasser zusammen mit dem Schichten und den Karstlöchern betrachten. Hier berücksichtigen wir nur das offene Grundwasser, das sich so verhält wie in den Schwemmändern der Flüsse.

Wenn auch das ganze Gebiet der Deckschichten in das große Schwemmland aufgefaßt werden kann, so ist doch keineswegs ein zusammenhängender Grundwasserspiegel darin vorhanden. Ein solcher findet sich nur in beschränkten Gebieten, z. B. allem Anscbeine nach auf der Weißrandhoch-
fläche, wo viele Brunnen von etwa 8 m Tiefe in erschlossen haben, ferner im Amboland, wo er von den Hochwasserflüssen gespeist wird. Sonst treffen wir das Grundwasser besonders in den Kalkpflanzen und Kalkumrändern an, die die tiefsten Stellen des Gebirges einnehmen und im abflußarmen Gebiete die Riviere vertreten. Ursprünglich waren alle Kalk-
pflanzen Seen, in denen das Grundwasser offen aus-
tage trat. Noch vor einigen Jahrzehnten gab es viele solcher Seen. Da das Grundwasserspiegel ge-
sunken ist, enthalten heute nur noch vereinzelt Kalkpflanzen Teiche. Die meisten sind trocken, noch ist das Grundwasser in geringer Tiefe erreichbar (Abb. 20, 21, 22). In den kalkführenden Flussläufen des Eiseb und Epukiro, in denen sich Kalkpflanzen an Kalk-
pflanze reicht, ist anscheinend ein Grundwasserstrom vorhanden wie in einem Rivier. Andere Kalkum-
ränder dagegen enthielten kein Grundwasser. Viele Anzeichen sprechen dafür, daß auch die scheinbar regellos im Gebilde umliegenden Kalkpflanzen in erstorbenen Flussläufen liegen. Sie sind wohl entstanden durch Kalkkohlete in Wasserbecken ehe-
maliger Riviere. Aber das Grundwasser ist keines-
wegs auf die Kalkpflanzen beschränkt. Sehr häufig sind außerhalb der Kalkpflanzen bis 1 km entfernt von ihren Brunnen angelegt, die den flachen Grund-
wasserspiegel der Pflanzen angetroffen haben. Man könnte daraus schließen, daß das Grundwasser flächenhaft über das ganze Kalkpflanzengebiet verbreitet ist. Das scheint in der Tat in manchen sehr ebenen Kalkpflanzengebieten der Fall zu sein, z. B. in Neitsas, östlich von Grootfontein, wo beim Farm-
haus Fockhof ein fern von jeder Kalkpflanze liegen-
der Brunnen in einzigen Metern Tiefe reichlich Wasser hat, im Kalkpflanzengebiet von Okakupa nördlich von Okahandja, bei Ovingi nördlich von

2. Feinwasser.

a. Allgemeines.

In festem Fels kann Wasser nur in Höhlräumen vorhanden sein. Diese Höhlräume sind von sehr verschiedener Art und Größe. Manche Gesteine

b. Spaltenwasser.

Auch im Tafelland des Südens spielen Klüfte für die Wasserführung eine große Rolle. Oft sind sie oberflächlich kenntlich durch durchlässige Aufschüttung der obersten Schicht. Besonders auf den Farmen Dickdorn und Kamelberg haben wir Brunnen kennengelernt, die auf solchen Klüften liegen.

Quellen sind selten im kristallinen Grundgebirge. Die Orangeberge, d. h. die nach dem Orange gebenden Erosionstäler, enthalten nach freundlicher Mitteilung von Farmer Paske eine Anzahl von Quellen, welche angeblich an Pegmatitgänge im Granit geknüpft sind. Im Karibiber Berglande, wo der Granit den Marmor häufig durchsetzt,
treten auch an der Grenze von Granit und Marmor Quellen aus, die von Johann-Albrechts-Höhe.

c. Schichtwasser.

Schichtwasser ist entweder in einer durchlässigen Schicht oder in gewissen Schichtfugen enthalten. Wir finden es namentlich in Tafelländern, wo die Schichten flach lagern. Hier kann der Geologe ein und dieselbe wasserführende Schicht leicht auf weite Strecken verfolgen, sofern die Wassererdeckung hier sicher ist. Es scheint allerdings, als ob solche Schichten, die in feuchten Ländern gleichmäßig voll Wasser sein würden, hier in Südwestafrika oft nur einzelne Adern enthalten. Range führt in der Geologie des Namibandes S. 93 bis 95 die hauptsächlichsten wasserführenden Schichten des Namibandes an. Er sagt:

Auch die Deckenschichten des Sandfeldes und Vorsandfeldes, die Botlleit- und Kalaharischichten, enthalten meistens Wasser, sogar in verschiedenen Schichten übereinander. Das obere Wasser ist offenes Schwemmflugsandwasser, das wir schon betrachtet haben. In den tieferen Schichten aber haben wir oft artesisches Wasser, das mehr oder weniger hoch in den Bohrlöchern ansteigt. Leider ist die Beschaffenheit, Verbreitung und Wasserführung dieser Schichten noch sehr wenig bekannt.

Im Ambohanda bestehen nach freundlicher Mitteilung von Dr. Vageler die Botleitrockschichten aus wechselwiegenden Tonen, Sanden und Sandsteinen, in denen mehrere Wasserhorizonte auftreten. Es scheint, daß man in 20 bis 30 m Tiefe stets Wasser antritt.

Omuramba und dem Omurakoojumuramba liegt etwa 120 m höher als die Omurambas und ist deswegen wohl besonders ungünstig für die Wassererschließung. Weiter östlich, im Kaikaufeld, ist ein Kalkplanengebiet mit flachem Grundwasser.

Im Sandfeld östlich des Omuramba u Omutako bestehen die Botletfschichten aus Sanden und Sandsteinen, Kalken, Kalksandsteinen und Tomen. Im Westen, wo sie noch etwas über das abflussarme Gebiet hinausreichen, sind sie wegen der fetten, in den Bohrlöchern von Okamatanga, erreichen sie 50 bis 70 m Mächtigkeit und führen in verschiedenen Schichten Wasser. Der Hauptwasserhorizont aber ist die Oberfläche des Grundwassers, hier meist Granit, auf der die Botletfschichten auffliegen. Da es scheint, daß man da, wo die Botletfschichten eine gewisse Mächtigkeit erreicht haben, an jeder beliebigen Stelle bohren kann und Wasser findet. Vielfach steht das Wasser unter Druck und steigt erheblich in den Bohrlöchern auf. Da das Land sich weiter nach Osten senkt, so ist es nicht unwahrscheinlich, daß man dort artesische Bohrlocher wird anlegen können, in denen das Wasser von selbst ausströmt.

Weiter südlich, in der Gegend von Klein-Naaz und auf der Weitrandhochfläche, haben wir wieder flaches Schwemmsandgrundwasser.

d. Karstöhöhlenerwässer.

Im Norden des Schutzgebietes, im Otavangeland, südlich der Etoschspatzone und im östlichen Kaokogebeit, treten vorwiegend Kalk- und Dolomitgesteine auf, die zwar an sich undurchlässig, aber wegen ihrer zahlreichen Klüfte im großen durchlässig sind und außerdem von kohlen säurehaltigem Wasser aufgelöst werden. Es handeln sich nicht nur um Kalk- und Dolomiten der Otaviformation, sondern auch um Marmore des Grundwassers. Die Verbreitung ist im einzelnen noch nicht bekannt. Auch die mächtigen Kalkabzügungen der jungen Deck schichten, die sich an diese Gebiete anschließen, besonders in der Grootoftene Fläche, gehören hierher.

Das beweisen schon die verschiedenen Höhen der einzelnen Wasserspiegel. In der Tsunamie ist nachgewiesen, daß nahe benachbarte, weasserfüllte Klüfte nicht zusammenhingen. Zwei 25c m voneinander entfernte Bohrlocher auf der Farm Brunkathen in den Deckkalkschichten der Grottensteiner Flächen hatten voneinander unabhängige Wasseradern angetroffen.

Die Quellen des Karstgebietes sind nach allem keine Karstquellen, die versunkene Flüsse darstellen, sondern ganz gewöhnliche Schichtquellen, die an der Gesteinswechsel geknüpft sind. Alle setzen sie reichlich Kalk ab, ja haben ganze Kalkhügel auf, aus deren Gipfel die Quelle austritt, bis schließlich der Kalkabsatz den Ausfluß hindert. Durch Öffnen des Kalkhügels kann man sie wieder zum Ausfluß bringen.

e. Heiße Quellen.

Schließlich seien noch die heißen Quellen des Landes erwähnt, die bei Warmbad, Alais, Ganikob, Rehoboth, Groß- und Klein-Windhuk, Groß und Klein-Barmen, Omapuyu und Onubro austreten. Gewöhnlich wird angenommen, daß sie auf Verwerfungsspalten liegen. Dr. K r o n e c k e r hat aber für die Groß-Windhuker Quellen nachgewiesen, daß sie in einer Spalte aufsteigen, an der keine Verwerfungen stattgefunden haben (21a). An der Quelle Avis bei Klein-Windhuk kenne ich feststellen, daß sie an einem der Glimmerschierer durchsetzenden Gange austritt (Gestein Nr. 998). Für das Vorhandensein einer Verwerfung lage ich keinen Anhaltspunkt.

Die hohen Temperaturen — bei den Groß-Windhuk Quellen 77,5 Grad — beweisen, daß diese Quellen aus größeren Tiefen kommen. Bei den Windhuker Quellen deutet nach K r o n e c k e r auch die Gehalt an Cö- und Cö₂-Verbündungen darauf, daß es juvenile Quellen sind. Wahrscheinlich sind alle die genannten Quellen juvenile Quellen, das heißt solche, deren Wasser noch nicht in den allgemeinen Kreislauf des Wassers einbezogen war, sondern aus der Tiefe der Erde emporgesteigt. Sie sind demnach grundverschieden von allem übrigen Grund- und Quellwasser, was nichts anderes ist als versunkenes Regenwasser.

Das Karstfeld mit seinem Höhlenwasser ist ein besonderes Teilgebiet.

B. Die Schwankungen des Grundwassers.

Über die Schwankungen des Grundwasserspiegels ist noch wenig bekannt, namentlich über die regelmäßigen Jahres-, Monats- und Tages-
Die unregelmäßigen Schwankungen mit dem jeweiligen Abkomen und nach der Ergiebigkeit des Regenjahres sowie die fast dauernde Abnahme waren ungenüglich.

b. Jahresschwankung.

In einem Brunnen in Aris, südlich von Windhus, wird alljährlich, auch wenn es noch nicht regnet hat, im Oktober ein Steigen des Wassers beobachtet. 1916 betrug der Wasserstand im Brunnen am 7. Juli 70 cm, am 1. Oktober 1,10 m.

Auch von verschiedenen Quellen des Waterberges, besonders von Okahavita, Ojoosomonga und Okatjuma wird berichtet, daß sie in der kalten Zeit am stärksten, in der Regenzeit am schwächsten sind. Ojoosomonga läuft angeblich um das schwächsten im September-Oktober, am schwächsten im Januar-Februar.

In den beiden Quellteichen von Oso, östlich von Gobabis, steigt das Wasser nach der Regenzeit bis zur heißen Zeit, und zwar in guten Regenjahren um über einen Meter.

In Kokosh, nordöstlich von Grootfontein, war der Wasserspiegel in zwei Brunnen am 1. März 1918 3 m vom Brunnenrand entfernt, Ende Mai waren beide Brunnen ganz voll.

Im Schlipfluß, einen Nebenfluß des Fischfusses, ist bei der Polizeistation Schlip eine Quelle, die nur in der Trockenzeit, und zwar von September bis Ende November zu haufen pflegt; die übrige Zeit ist diese Stelle trocken.

In den meisten Fällen beruht wohl die Wassererhöhung in der Trockenzeit darauf, daß die Wasserzufuhr der Regenzeit erst verspätet die Beobachtungsstelle erreicht, weil das Grundwasser nur sehr langsam fließt. Außerdem scheint die Temperatur den Stand des Grundwassers und die Quellen zu beeinflussen.

b. Monatsschwankung.

Von der Kobosquelle im Khomas Hochland be- richtet mir Herr Scheweize, daß er dort gewöhnlich 500 Rinder einen Tag tränken konnte. In den Vollmonatagen aber konnte er jeden Tag 800 bis 900 Rinder tränken.
An mehreren anderen Tagen wurden ähnliche Schwankungen gemessen. Sind vielleicht diese Schwankungen nur scheinbar, beruhen sie auf ungleicher Verdunstung im Quellteich? Der schließlich bestimmte Quellteich hat eine Oberfläche von 53 qm. Wenn wir annahmen, daß die Verdunstung an seiner Oberfläche um 12 Uhr 1 cm stündlich mehr beträgt als um 6 Uhr früh, so würde der Abfluß dadurch um 0,013 Sek. verlangsamt. Die Annahme dürfte wohl das mögliche Maximum der Verdunstung darstellen. Die beobachteten Schwankungen von 0,02 bis 0,03 Sekundenlitter können dadurch nicht erklärt werden, sondern müssen auf stärkerem Zufluß beruhen. Dasselbe gilt für die vorher genannten Quellen. Nicht nur der Quellbach läuft in der kühlen Tageszeit weiter als in der heißen, sondern er fließt mehr Quellwasser aus.

Diese Tageschwankung des Grundwassers dürfte ähnlich wie die Jahreschwankung mit der Temperatur zusammenhängen. Dafür sprechen die Umstände, daß das Minimum und Maximum kurz nach der Zeit der höchsten und der niedrigsten Lufttemperatur auftreten.

d. Schwankung beim Abkornen.

Wenn abkommendes Flußwasser versinkt, so steigt der Grundwasserstand plötzlich sehr beträchtlich. Wenn das Abkommen aufgehort hat, sinkt er wieder, und nur ein Teil des Anstieges bleibt bestehen. Dr. Schröder berichtet aus Oka-
khanda, daß kurz nach dem Abkommen die Brunnen bedeutend höher waren als 18 Tage später, dann aber blend sie sich auf dieser Höhe. Dasselbe wurde in Swakopmund beobachtet und ist vermutlich überall der Fall. Der Anstieg des Grundwassers durch Versunken des abkommenden Wassers besteht also aus zwei Elementen. Das eine Element gehört zur Jahresperiode, zum jährlichen Anstieg in der Regenzeit. Das andere ist eine kurze unregelmäßige Schwankung, die von dem jeweiligen Abkommen abhängt.

e. Schwankung der Regenjahre.

spiegel um etwa 2 m gefallen. 1917 hob er sich wieder, so daß an vielen Stellen das Wasser wieder offen floß.

f. Orte starke Orte geringer Schwankungen.

Eine Schwankung des Grundwasserstandes äußert sich an verschiedenen Stellen in sehr verschiedenen Stärke, obwohl ihre Ursache überall die gleiche ist. In einem und desselben Flüßlauf kann man das sehr deutlich beobachten. An Stellen, wo der Grundwasserstand durch eine Felsbarre oder auch durch eine künstliche Grundscheide in einer bestimmten Höhe gehalten wird, sind die Schwankungen sehr gering. Je weiter wir von einer solchen Stelle aufwärts gehen, desto größer werden sie (Fig. 1).

Brünnle und Bohrlöcher, die aus Spaltenwasser gespeist werden, zeigen um so größere Schwankungen, je weniger Wasser das Spaltensystem enthält. Ein kleines Spaltensystem wird rasch geleert und gefüllt. Starke Schwankungen sind daher kein günstiges Zeichen.

Wo das Wasser gleichmäßig auf eine ausge
deckte Schicht vertieft ist, pflegen die Schwankungen gering zu sein, so in den Kalkdämmen des Okah-
kujgebietes und bei den Schichtquellen des Water-
berges.

Sehr bedeutende Schwankungen sind im Kastenfeld beobachtet worden. Der Guinncar ist 1909 um etwa 30 m gestiegen, der Ojikotseer 9 m. In den Harasibhöhlen wurde von 1909 bis 1917 eine Ab-
nahme von etwa 15 m festgestellt, vorher scheint das Wasser einmal noch tiefer gestanden zu haben.

IV. Die Speisung des Grundwassers und die Frage der Austrocknung.

A. Der Wasserhaushalt.

1. Die Posten der Wasserverluste.

Der in einem Lande vorhandene Wasservorrat wird durch Regenfall verzeichnet, durch Verdunstung, Abfluß und Verbrauch vermindert. Wir können das durch die Gleichung ausdrücken:

\[W = W_0 + R - V - A - B \]

wo \(W \) die Wassermenge in einem beliebigen Zeitpunkt, \(W_0 \) die Wassermenge zu einem gegebenen Anfangszeitpunkt bedeutet, \(R \), \(V \), \(A \) und \(B \) den Regenfall, die Verdunstung, den Abfluß und den Ver-
größeren Zeiträumen sollten die Schwankungen sich ausgleichen, der Kreislauf stationär sein. Ist das nicht der Fall, findet eine dauernde Änderung der Wasserverhältnisse statt, so hat das natürlich die weittragenden wirtschaftlichen Folgen.

In Südafrika ist der Regenfall seit Jahren auf vielen Stationen gemessen worden, so daß wir trotz seiner Uneinseitigkeit ungefähr wissen, wieviel Wasser dem Lande durch Regen zugeführt wird. Verdunstung und Abfluß entziehen sich jedoch der Messung. Denn wenn wir auch durch Messung herausfinden, daß die südafrikanische Zone von einer Wasserfläche im Jahre so und so viele Millimeter verdunstet läßt, so wissen wir über die im Lande verhauten Mengen noch gar nichts, denn es verdunstet nur da Wasser, wo welches vorhanden ist, also nur an vereinzelten Stellen. Aber wir können auf anderem Wege ein Bild von diesen Verhältnissen gewinnen.

Zunächst wird die Frage dadurch vereinfacht, daß Oberflächenwasser im Lande so gut wie gar nicht vorhanden ist, daß es sich also ausschließlich um die Grundwassermenge handelt. Die Frage, die wir zu beantworten suchen, lautet also: Wie werden die Grundwassermengen von Südafrika durch Regenfall, Verdunstung und Abfluß verändert? Der Regen sickert teils ein, teils verdunstet er, teils fließt er sofort oberflächlich ab.

\[I = v + a. \]

Hierin ist \(I \) zwar dieselbe Größe wie oben \(R \), aber \(v \) und \(a \) sind etwas ganz anderes als \(V \) und \(A \). Sie beziehen sich nur auf den gefallenen Regen, es sind Bruchteile von \(r \), während \(V \) und \(A \) auch von den Wasserversätzen gespeist werden. Von dem gefallenen Regen kommt nur der Teil, der einsicker, die Größe \(s \) für die Speisung des Grundwassers in Betracht. Wie verhält es sich nun damit?

2. Die Speisung des Grundwassers.

Über die Tiefe der Versickerung des Regenwassers in reinem Sandboden, wie im Kalaharisausteine, sind mir keine Beobachtungen aus dem Schnitzausländischen.
gebiete bekannt. Sie ist natürlich größer als in den feineren Lehmgebieten, ob sie aber häuflicht, um die oft ziemlich flache Decke des Kalklandsandes zu durchschneiden und das Grundwasser zu speisen, ist mindestens zweifelhaft.

Das lebt auch der Angenommen, daß selbst bei mäßiger Regen beginnt in steinigen Gebieten sofort ein allgemeines Fließen.

Ein Brunnen auf Farm Kamelberg, Bezirk Malahöhe, ist im anstehenden Gestein angelegt, 80 m von einem kleinen Rivier entfernt. Die Anlage eines kleinen Dammes im Rivier verursachte eine Zunahme des Wasserspiegels im Brunnen. Verschiedene Brunnen des Städtchens Okanahanda, die im Glämerschiefer liegen, wenn auch oberflächlich mit Schwellenland bedeckt, und die aus Klüften der Glämerschiefer gepräst werden, hängen auch vom Rivier ab, aber ihre Schwankungen erfolgen sehr verspätet, verglichen mit den Brunnen, die das Wasser unmittelbar aus dem Schwellenland erhalten.

Polizeiinspektor Richter in Bethamiet beobachtete folgendes: „Das ganze Quellgebiet von Bethamiet hängt vom Lauf des Konkia ab. Ich bin seit 1908 in Bethamiet stationiert, während dieser Zeit habe ich die Beobachtung gemacht, daß, wenn der Konkia 8 km oberhalb von Bethamiet abkommt, die Quellen innerhalb acht Tagen steigen (die Quellen lassen stärker). Kommt aber der Konkia zwischen Bethamiet und Kilometer 8 oberhalb ab, so nehmen die Quellen nicht zu. Im Konkia, 8 km oberhalb Bethamiet, zieht eine senkrechte Steinrichtung durch das Flüßbett, welche jedenauf das Wasser aufhält und das Wasser nach links durch den Kalkrand nach Bethamiet abführt. Das Konkia beträgt gegenüber Bethamiet um einen Meter höher als das Tal Bethamiet.“

Einer Tromper von der Otjomunamini schreibt: „Der hierzige Brunnen ist ein Erzoff getrieben (Kalkspat), er hat eine Tiefe von 20 m. Vor der Regenzeit war der Wasserstand 2 m, heute steht das Wasser auf 16,50 m. Der Brunnen liegt etwa 10 m von einem kleinen Rivier, das Riff durchschnürt dasselbe und wird von ihm gespeist.“

Aus Harnus im Bezirk Malahöhe wird berichtet: „Infolge von Dammbauten ist in Brunnen und Bohlöchern, genau nachweisbar, der Grundwasserstand um 5 m gestiegen.“

Ob in dem weiten Gebiete des Kalaharipfandes das Regenwasser durch den Sand zum Grundwasser dringt, ist nach dem, was wir aus Gordonien hörten, sehr fraglich. Die Stellen, an denen das Wasser versackt, sind hier die Kalkomrungen und Kalkpfannen. Im obersten Epukiro haben Mitte März 1905 und Anfang Februar 1913 gewaltige Regenfälle das Tal zum Fließen gebracht. Der Strom ergo sich als breiter Wasserfall in die Kalkpfanne Otjiluo, füllte diese an und ließ sie überfließen bis zur nächsten Kalkpfanne, 2 km weiter, wo der Rest des Wassers versank. Noch in vielen Kalkpfannen hat man beobachtet, daß, wenn die Pfanne ganz vollgelaufen war und das Wasser 2 bis 3 m tief darin stand, sie nach wenigen Tagen wieder leer war. Das kann nicht durch Verdunstung, nur durch Versinken des Wassers geschehen sein. Eine Ausnahme bilden die Kalkpfannen, die keine Krater haben, sondern mit Kalkemergel eben angefüllt sind. In ihnen steht das Wasser monatelang wie in einem Vley und verschwindet allmählich durch Verdunstung. Das Grundwasser der Kalkpfannen ist oft nicht im Kalktuff, sondern in seiner Unterlage in den Bodenschichten oder in zerküpfelten Grundgebirge enthalten. Das Grundwasser dieser Gesteine wird also offenbar von den Kalkpfannen aus
gespeist. So sehen wir, daß die Kalkplatten und die Kalkkonsumroben nicht nur durch ihren Grundwasserstrom, sondern auch als die Hauptversorger des Grundwassers dieselbe Rolle spielen wie die Riviere im Gebiet der Flüsse.

Das Ergebnis dieser Betrachtung ist, daß, abgesehen von den Kalkgebieten, die Speisung des Grundwassers so gut wie gar nicht durch den unmittelbar auffallenden Regen auf der ganzen Fläche des Landes erfolgt, sondern nur durch das abkommende Wasser in den Rivieren und Kalkfelsen und auch da nicht überall, sondern nur auf bestimmten Strecken und an bestimmten Orten und in beschränkten Zeiten.

3. Die Grundwasserabfuhr.

Der Zufuhr steht die Wasserabfuhr gegenüber. Sie kann erfolgen durch Verbuschung oder Ablauf oder durch Verbrauch zum Tränken und anderen wirtschaftlichen Zwecken.

Wie stark die Grundwasserströme der Flüsse sind, ist naturgemäß unbekannt. Die einzige Messung ist die S. 36 erwähnte des Herrn v. Zwergn, die 15 000 ccm im Tag ergab. So unsicher dieser Wert ist, er kann wohl als die Großenordnung des Grundwasserstromes in einem Fluß, wie dem Swakop, angesehen werden.

Ähnliche Mengen wie der Swakop dürften der Kuiseb, Omurara und Ugab in den Ozean ergießen und der Fischflut, wenn er auch keinen dauernnden Grundwasserstrom hat, in den Oranje.

Im Osten gehen die Grundwasserströme der Omuraran, soweit bekannt, nicht über die Landesgrenze hinaus. Wenn sie vorher auftreten, so liegt das vermutlich daran, daß sie grundwasserführende Schichten speisen. Da das Land sich nach Osten in die Kalahari hinein beträchtlich senkt und die Schichten auch nach Osten einfallen, so ist anzunehmen, daß dieses Schichtwasser nach Osten abfließen kann und daß hier unbekannte Wassermengen dem Lande entzogen werden.

Aus den dargelegten Möglichkeiten des Abflusses geht hervor, daß im ganzen die abfließenden Grundwassermengen nicht sehr bedeutend sein können. Sie dürften z. B. verschwindend gering sein im Vergleich zu den Wassermengen, die aus Deutschland herausfließen, ja selbst aus einem Teil Deutschlands, der zusammen wie Regen erhält, wie das ganze Südwestafrika. Nehmen wir einmal an, der Ablauf von Grundwasser beträgt 1 000 000 ccm im Tage, so würde die jährlich abfließende Grundwassermenge, über das ganze Land verteilt, dieses mit einer Schicht von 0,45 mm Dicke überziehen.

für den Weißen 300 Liter, wobei der Verbrauch gemäßlicher Betriebe gemittelt ist. 2000 ha bewässertes Land ist wohl reichlich. Zur Bewässerung von 1 ha rechnet man ungefähr 100 Tage im Jahr je 100 ccm, sagen wir also 30 ccm im Tage.

<table>
<thead>
<tr>
<th>Stück</th>
<th>Liter im Tag</th>
<th>ccm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Großvieh und Eselzüchter</td>
<td>150,000</td>
<td>30</td>
</tr>
<tr>
<td>Kleinvieh</td>
<td>70,000</td>
<td>10</td>
</tr>
<tr>
<td>Eingeborene</td>
<td>80,000</td>
<td>10</td>
</tr>
<tr>
<td>Weide</td>
<td>15,000</td>
<td>200</td>
</tr>
<tr>
<td>Bewässertes Land</td>
<td>2,000 ha je 30 ccm</td>
<td>60,000 ccm</td>
</tr>
<tr>
<td>rund.</td>
<td></td>
<td>82,000 ccm</td>
</tr>
</tbody>
</table>

So sehr alle diese Betrachtungen über den Wasserhaushalt bestimmter Zahlen ermageln, sie setzen uns doch in den Stand, man etwas besseres Rüstzeug, als es bisher wohl geschah, eine gar bedeutende Frage zu erörtern, nämlich:

B. Die Frage der Austrocknung Südafrikas.

1. Abschnitt neuer mit Zunahme

Ebenso fand eine bedeutende Verbreiterung der Wasserverhältnisse statt. Der Swakop war 1917 lang und stark abgekünstelt, und das Grundwasser hatte sich bedeutend gehoben, so daß einige Stellen wieder offen flossen. 1918 steig das Grundwasser im unteren Swakop abermals, noch andere Stellen kamen zum Fließen.

Farn Belina. Drei Riviere, die über den Kalkrand zum Ugab gehen, hatten ans Rande fast immer
offenes Wasser, das aber in den letzten Jahren ver- sagt hatte. In jedem dieser Riviere ist ein Brunnen gesprengt.

<table>
<thead>
<tr>
<th>Brunnenname</th>
<th>Nm</th>
<th>m</th>
<th>m</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farn Namtanga</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Wasserstand Oktober 1916</td>
<td>1917</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Farn Namtanga (Kalkpflanzengebiet). Die Brunnen standen Mai 1917 2 m höher als Mai 1916. Dazu kamen noch die Bründen, die tief in den Glimmerschiefer gehen, hat sich das Grundwasser um 7 bis 8 m gehoben. 1918 blieb es auf demselben Stande. Ähnliches Steigen der Brunnen wird von anderen Farnen der Gegend berichtet. Auf den Farnen Groß- und Groß-Omaruru haben sich 1917 plötzlich wieder starke Quellen im Flussbett gebildet, die nach Aussage der Eingeborenen auch in alten Zeiten vorhanden waren.

5. Gobabis. Eine Quelle im Ort, die zum letzten Male 1911 lief, ist wieder in Tätigkeit getreten. Der Schwarze Nosob, der 1916 im Durchbruch bei Gobabis stehende Tümpel und einen ganz schwach riechenden Wasserladen hatte, fließt von Goldbeck bis zum Schweineregen unterhalb Gobabis. Auf Farm Styria ist der Weiße Nosob, der nachgewiesen war, südlich von Kaulunts seit 10 Jahren nicht mehr abgekommen war, volle 10 Wochen mit nur wenigen Tagen Unterbrechung geflossen in voller Breite und 78 cm Tiefe.

6. Windhuk Hochland. Im Jahre 1917 lief das Avenier an einigen Stellen bei Klein-Windhuk das ganze Jahr hindurch, was seit 20 Jahren nicht mehr vorgekommen war.

Im Komas Hochlande begannen nach dem guten Regenjahr 1917 verschiedene Quellen wieder zu laufen, die jährlich, meist seit 1910 oder 1911, trocken gewesen waren, u. a. die Schwerin-Löwitzsche Quelle.

Die Beobachtungen seit 1910 zeigen, daß das Sinken des Grundwasserspiegels, von den Jahreswiederholungen abgesehen, dann vor sich geht, daß auch gute Regenjahre es nicht wesentlich aufhalten, daß aber ein außerordentlich starkes Regenjahr wie 1917 ein bedeutendes Steigen hervorbringt und damit den Sabben vieler schlechter Jahre wieder gutmacht.

In Blaufontein, Bann Arataob, war 1914/15 ein sehr reiches Regenjahr. Vor dem Kriege gaben die Brunnen daselbst folgende Beträge:

<table>
<thead>
<tr>
<th>Brunnen</th>
<th>Nr. 3 17 m tief und Tunnel von 5 m täglich 2 chen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nr. 3 21/2 m tief, täglich 1/2 chen</td>
</tr>
<tr>
<td></td>
<td>Nr. 3 17 m tief, täglich 5 chen</td>
</tr>
<tr>
<td></td>
<td>Nr. 4 15 m tief, täglich 5 chen</td>
</tr>
</tbody>
</table>

Nach der Regenzeit waren sämtliche Brunnen voll. Der Wasserstand veränderte sich beim Pumpen nicht, auch als ununterbrochen 80 chen gepumpt wurden. Das Wasser des Brunnen 1 ist infolge des Regens stark salzig geworden. Wieweit das...
Jahr 1916/17 den Grundwasserspiegel gehoben hat, ließ sich hier nicht feststellen, da die Brunnen noch immer voll und Pumpversuche ergebnislos waren.

2. Dauernde Abnahme?

Die Kalkpfannen Günther's, Okokokoro und Kalkloch A liegen an der Südgrenze dieses Kalkpfannengebietes, wo es sich an das Windhuke Hochland anschließt, in der beträchtlichen Meereshöhe von 1350 m. Die wasserführenden Deckenschichten dürften hier eine der höchsten Stellen ihres Vorkommens haben. Es ist klar, daß bei Grundwasserabnahme die höchsten Teile zuerst leerlanden. Dies beobachten wir ja jedes Jahr an den Flüssen. Diese Lage macht also die bedeutende Abnahme des Grundwassers in Okosongwe und die fehlende Zuname 1917 begreiflich. Ähnliches gilt für Okosongwe. Im unteren Swakop dagegen wird das Wasser am längsten vorhalten müssen, da war selbst 1916 noch offenes Wasser in Noxidus und 1917 waren die früher fließenden Stellen wohl alle wiederhergestellt. Doch fassen sie nicht so stark, wie vom Anfang der 1890er Jahre berichtet wird.

Alles dies scheint dafür zu sprechen, daß außer den bedeutenden Schwankungen, die sich aus langdauernder Abnahme und plötzlicher Zuname zusammensetzen, ein dauerndes Sinken des Grundwasserspiegels stattfindet.

Kalahari in den letzten Jahrhunderten bedeutend besser bewässert war als heute und daß Nieder- schläge abgenommen hätten (31).

3. Ursachen, die die Austrocknung begünstigen.

a) Man wies auf die ungünstigere Verteilung der Regen hin; früher seien die Regen mehr als Landregen gefallen, die in den Boden eindringen, heute mehr als heftige Gässe, die rascher oberflächlich abfließen und weniger eindringen. In Südwestafrika haben wir gefunden, daß sanfte Regen allerdings in den oberflächlichen Boden eindringen, daß aber die Speisung des Grundwassers wesentlich von den Flußläufen aus erfolgt und vom Abklingen der Flüsse unabhängig ist. Es sollten dennoch gerade die starken Regengüsse, nicht die sanften Landregen für die Speisung des Grundwassers günstiger sein. Auch weist J. R. Sutton darauf hin, daß nach älteren Schätzungen in der Mitte des vorigen Jahrhunderts die Regen- und Wasserverhältnisse so gewesen seien wie heute, daß auch damals die Flüsse sehr häufig gewaltig abkamen, die Regen also in heftigen Güssen fielen. Jahre mit vorherrschend sanften Landregen seien seltene Ausnahmen gewesen. Ein solches sei noch 1891 im Freistaat eingetreten, wobei die Erde gründlich durchweicht wurde und alleinhalben Quellen austraten (11, 1914, S. 894).

Durch die hohe Lage Südafrikas gewinnt diese Ansicht an Wahrscheinlichkeit, denn die hohe Lage muß den Abfluß nicht nur des Oberflächenwassers, sondern auch des Grundwassers begünstigen. Das wird um so mehr der Fall sein, wenn etwa die Hebung, die den Kontinent in diese Lage gebracht hat, noch andauert, wofür manche Anzeichen sprechen. Gegen Passages Ansicht läßt sich anführen, daß die Abnahme ja nur an den obersten Grundwasserschichten beobachtet ist, von denen man annehmen sollte, daß sie schnell auf eine Klimaverschlechterung sich einstellen müßten.

c) E. H. L. Schwartz meint, daß die Küstenflüsse die Niederflüsse angezapft hätten und dadurch die Austrocknung der Sahara wie der Kalahari be wirkt hätten (31). Vom Konsens glaube ich den Nachweis erbringen zu können, daß er früher zur Erosion genutzt und dann abgezapft wurde, wodurch der Erosionsprozeß vor sich geht. Die anderen Ännerungen sind sehr hypothetisch, aber wenn sie sich tatsächlich stellten, so könnten sie wohl die Abnahme der Wassermenge seit dem Zeitpunkt der Ännerung, also wohl seit der Fluvialzeit, erklären, aber kaum die Abnahme in der historischen Zeit Südafrikas.

Das Austrocknen des Namibsee schien ein Hauptbeweis für die fortschreitende Austrocknung Südafrikas zu sein. Sti g a n d aber erfuhr von den Makua, daß beim Rückzuge des Wassers vom Westende des Sees die Stämme von Steppenbäumen entblößten wurden (29). Wenn diese Nachricht bestätigt, so würde das beweisen, daß einstmal an Stelle des Sees Baumnsteppe oder Trockenwal stand.

Aus Südwestafrika haben wir einzigene Beobachtungen, die einen sehr tiefen Grundwasserstand in früheren Jahren beweisen. In der Höhle Harasb im Otaviberglande waren Kaffern unterirdisch weit ostwärts gegangen, was einen wesentlich tiefen Grundwasserstand voraussetzt, als der tiefste von Weißen beobachtete (1917) war. F. S. E. h. hat auf der Kalkpflanze Okapotjinde, örtlich von Eingeborenen einen alten Herrenbrunnen nachgegraben und gefunden, daß er unter dem nördlichen Grundwasserspiegel von 1916 hinausging. Er muß also vorher einmal das Wasser noch niedriger gestanden haben.

Missionar R a u t a n e n in Okonkola sagte mir 1934, er habe in den 43 Jahren seines Aufenthalts im Ambolande keine Ausreichen für Abnahme des Wassers beobachtet. Nur wechselten trockene und feuchte Jahre. Er vermutete eine dreijährige, vielleicht auch eine achtjährige und eine 28jährige Periode. Das Jahr 1868 war im Ambolande ein forschteres Trocken- und Hängerjähr, in dem das Eingeborenen die Palmhämse fällten, um das Mark zu genießen. Als R a u t a n e n ankam, benutzte er die ausgeholten Stämme zu Brunnenspül. Auch im Ambolande zeigte es sich beim Tiefergraben von Brunnen, daß sie früher auch schon tiefer gewesen waren. Das dürfte nicht die einzigen derartigen Beobachtungen sein. Wir müssen aus ihnen auf Schwankungen von längerer Dauer, vielleicht B r ü c k n e r sche Perioden schließen, aber nicht auf eine dauernde Abnahme des Wassers.

Aus diesen Betrachtungen ergibt sich, daß eine fortschreitende Austrocknung Südafrikas jedenfalls nicht bewiesen und nach den Untersuchungen aus anderen Trockengebieten auch nicht wahrscheinlich ist. Doch schwankt die Menge des Grundwassers und des Oberflächenwassers bedeutend, nicht nur nach Jahrzügen, sondern auch in Zeiträumen von Jahren und Jahrzehnten. Daß die Abnahme dabei viel häufiger beobachtet wird als die Zunahme, liegt daran, daß das Wasser fast dauernd allmählich sinkt.

3. Erhaltung der Wasservorräte.

1. Die allgemeinen Grundlagen der Landwirtschaft.

A. Physiologische Bedingungen.

1. Klima.

Auf die örtliche und zeitliche Verteilung des Regenfalles und seine große Unregelmäßigkeit ist schon im Anfang des vorigen Kapitels hingewiesen, ebenso auf die starke Verdunstung. Bei so ge ringem und unregelmäßigen Niederschlägen ist der größte Teil des Landes ein Steppenland, das für Viehzucht sehr geeignet ist.

Obwohl sie durch die große Meereshöhe von 1000 bis 2000 m berücksichtigt wird, ist die Temperatur während des ganzen Jahres hoch genug, um das Pflanzenleben nicht zu unterbrechen. Mit künstlicher Bewässerung gedeihen die Pflanzen auch in der winterlichen Trockenzeit. In Windhuk, in 1657 m Meereshöhe, beträgt die Temperatur des kühlen Monsames, des Julis, 13,4 Grad; die des

wärmsten, des November, 23,4 Grad; die mittlere Jahresveränderung beträgt 10,2 Grad. Im südlichen Namalande geht die Temperatur des kühlen Monates auf 8,4 Grad herunter (22).

2. Wasser.

Zur Hebung des Wassers benutzt man bevorzugt Schöpfgefäße oder Brunnenwinden, in der Regel Pumpen, die mit der Hand, durch Tier oder einen Gießwasserzieh, durch einen Windmotor, eine Dampfmaschinen oder einen Petroleummotor getrieben werden (Abb. 26, 35).

3. Weide.

Die notwendig werdenden Eingeboren pflegen das Gras am Ende der Trockenzeit abzubrennen, damit das neue Gras ungehindert durch die trockenen Halden üppiger emporspricht (Abb. 29). Bis dahin suchten sie mit ihren Herden eine andere Gegend auf. Bei Wind verbreiten sich die Grasbrände weit, besonders nach guten Regenjahren, wenn das Gras dicht steht. Für selbständige Farmer ist es ein schwerer Schaden, wenn die Weide ihrer Farm abbrennt, und sie genötigt sind, ihr Vieh anderwärtis unterzubringen. Abgesehen davon verursachen die Grasbrände noch anderen Schaden. Sie beeinträchtigen den Baumwuchs in dem schon an sich holzarmeren Lande. Der Regen fällt auf die abgebrannten Flächen stärker ab und spült den Boden weg, was ungünstig auf die Wasserhaushalt gewirkt hat. Wahrscheinlich werden auch die zarteren Futtergräser zurückgedrängt, die härteren ausgebreitet und dadurch die Weiden verschlechtert. Die deutsche Regierung hat daher das Grasbrennen streng verboten, auch fahrlässige Brandstiftung wird schwer bestraft. Das hindert nicht, daß öfter Grasbrände ausbrechen und nicht immer auf engem Raum beschränkt werden können.

Im großen ganzen ist der Grassuchs und die Menge des Futters überhaupt proportional dem je weiligen Regenfall. Daher ist auch die Menge Vieh, die man auf einer bestimmten Weidefläche, etwa auf einer Farm halten kann, dem Regenfall etwa proportional. Daraus ergibt sich, daß man derartig
nur soviel Vieh halten kann, als die Weide in schlechten Regenjahren erlaubt. Mit anderen Worten: der Bestockungsindex einer Farm wird sich nach den schlechten Regenjahren richten, wenn anders man schwere Verluste vermeiden will. Das ist die südwestafrikanische Form des Lieblings-Gesetzes vom Minimum.

B. Wirtschaftsbedingungen.

1. Anfangsstadium.

2. Der Besitzstand.

Das durch Enteignung der Eingeborenen gewonnene Land gehört zunächst teils der Regierung, teils einer Anzahl privilegierter Landgesell-

Außer diesen auf Viehzucht gegründeten Farmen gibt es im Bezirk Groebtontein eine Anzahl Ackerbaufarmen von nur 300 bis 1000 ha. Einige größere Farmen, bei denen Ackerbauselbständigkeit vorhanden war, sind bereits zerstört worden, z. B. Uitkom durch Erbteilung.

Schließlich gibt es noch die Kleinholdungen von 10 bis 50 ha, die auf Bewässerungsgebiet gegründet sind und an geeigneten Stellen, wie Kleinwindhuk, Oossa, Goanikoer, bei Omaruru, am Waterberg, in größerer Zahl nebenbei liegen und außer Goanikoer ein gemeinsames Westland besitzen für das wenige Vieh, das auf einer Kleinholde für den Eigenbedarf gehalten wird.

3. Die Arbeitskräfte.

a. Der Farmerstand.

Leute, die einen anderen Beruf im Schutzgebiete ausüben, können bei Farmbesitzern sind und die Farm durch einen Verwalter bewirtschaften oder auch gar nicht bewirtschaften lassen. Würde, Kauflust zu

b. Die Eingeborenen.

Die Landarbeiter sind die Eingeborenen. Weiße Landarbeiter gibt es eigentlich nicht, wenn auch in manchen Kleinsiedlungen der Farmer ohne Eingeborene arbeitet. Als Viehwärter sind auch die Eingeborenen schlecht durchschnittlich und könnten nicht durch Weiße ersetzt werden. Im allgemeinen herrscht Arbeitermangel. Das ist eine Folge der überaus dünnen Besiedlung des Schutzgebietes. Von dem jeberlebenden Ambondane abgesehen, das physisch und wirtschaftlich außerhalb der Kolonie liegt, hat das ganze Land andermal so groß wie Deutschland vor dem Kriege, etwa 85.000 Eingeborene oder 0,1 Einwohner auf den Quadratkilometer. Von diesen in Reservaten lebenden Eingeborenen abgesehen, sind die Stammesorganisatio-
...sen der Eingeborenen völlig aufgehoben. Sie leben nicht mehr in Stallwagenscheinbrüchen, sondern in Wurften auf den Farmen ihrer Herren, gewohntlich Angehörige verschiedener Sätze oder Herren, wenn auch in jedem Landesteil der Stämme vorherrschend, dem früher hier diese Gegend gehörte: im Süden Hottentotten, in der Mitte Herero, in Nordern Herero und Kaffern.

4. Das Kapital.

Der entgegengesetzte Typus sind die mit kleinem Kapital, unter 20000 M., begonnenen Betriebe. Das sind die Leute, die mit „nichts“ angefangen haben und deshalb nicht in der

Mittelbetriebe, mit 30,000 bis 200,000 M. begonnen, sind wohl die große Mehrzahl. Für sie gilt besonders, „daß die Farmen nichts einbringen“, weil die Einkünfte wieder in die Farm gesteckt werden müssen, um die Anlagen, die die großkapitalistischen Betriebe von vornherein machen konnten, allmählich nachholen. Leute mit solchem Kapital, besonders wenn sie Familie haben, können nicht längere Jahre ganz primativ leben. Sie können aber nur sehr wenig Geld aus der Farm ziehen und müssen daher manches Opfer bringen. Besonders hart werden diese Opfer für den gebildeten Farmer, der seine Kinder nach der herrschaftlichen Schule schicken möchte. Bildung ist ein Luxus, den man sich in Südwestafrika erst von 200,000 M. aufwärts leisten kann. Der einzahre Mann, der auf die engere Verbindung mit der Heimat und ihre Anregungen, auf Europäer, Erziehung der Kinder in Deutschland verzichtet, ist da dem gebildeten Farmer gegenüber wirtschaftlich im Vorteil. Doch fehlen demnach den Kindern die einfachsten Anschauungen unserer Kultur.

5. Verkehr.

So ist Südwestafrika vorläufig in wesentlichen auf den inneren Markt angewiesen, wenn auch die Zeit kommen muß, für dieses Erzeugnis früher, für jenes später, wo der innere Markt gedeckt ist und man zur Ausfuhr schreiten muß. Milch und Butter

II. Die einzelnen Wirtschaftszweige.

A. Viehzucht.

1. Allgemeines.

a. Viehzuchtbestand.

b. Nomadisieren.

Das Nomadisieren bietet noch einen anderen Vorteil, den des Weidewechsels. Es ist dem Vieh besser, wenn es öfters auf andere Weiden kommt und dadurch vor allen einseitigen Ernährung bewahrt bleibt, wohin Krankheiten im Gefolge hat. Die gedüngte Lahnweide scheint auf einseitige Ernährung, und zwar auf Mangel an Phosphaten zu beruhen. Durch Weidewechsel kann man sie oft vermeiden. Wenn die Tiere an einem Ort zu sterben beginnen, so zogen die Hereros jedesmal an einen anderen Ort. Der Farmer aber kann das nicht
und sieht sein Vieh unter der Seuche dahinsterben. Andererseits werden Infektionskrankheiten, wie Langge, Ruinderpest, durch das Herumziehen auf andere Weide und anderes Vieh übertragen und sind nur durch strengen Abschluß zu bekämpfen oder wenigstens örtlich zu beschränken. Auch dieser nützt nicht immer, da z. B. die Ruinderpest noch durch Wild übertragen wird.

c. Farmwirtschaft.

Das Nomadisieren ist die beste extensivische Nutzung des Weidefeldes. Es ist aber nur möglich bei gemeinsamem Besitz riesiger Landestrecken. Unsere Kolonialwirtschaft hat das Land an viele Besitzer in einzelne Farmen aufgeteilt und damit das Nomadisieren unmöglich gemacht. Das ist zunächst — ich glaube nicht zu hart zu urteilen — ein Rückschritt gegen die Wirtschaft der Eingeborenen, nämlich so lange, als unsere Farmer extensiv wirtschaften müssen. Es ist aber die Grundlage einer intensiveren Wirtschaft, die sich mit der Zeit entwickeln wird.

Man muß Reserveweide für schlechte Jahre übriglassen. Aber auch damit ist man keineswegs sicher vor Verlusten. Wenn man z. B. die Bestockungsziffer so niedrig nimmt, daß in einem guten Regenjahr das Vieh mit einem Drittel der Weidefläche auskommt und zwei Drittel als Reserve bleiben, so mögen diese zwei Drittel, die natürlich nicht mehr vollwertig sind, mit den übrigen, was im schlechten Jahre noch dazwischen ist, für zwei weitere Jahre reichen. Kommen aber noch drei schlechte Jahre hintereinander, in denen wenig Gras wächst, so ist im dritten Jahr kein Futter mehr auf der Farm. Selbst wenn die Farm noch größer oder die Bestockungsziffer noch geringer angenommen wäre, würde das auch nichts nützen, denn so lange hält sich die Weide nicht, im dritten Jahre ist keine Weide mehr da. In den regionenreichen Gegenenden am Wasserberg und im Bezirk Grohendienst bleibt auch in den schlechtesten Jahren die Weide nicht aus. Andererseits aber muß man mit solchen Dürren rechnen, besonders im Süden. Es ist daher auch bei sehr mäßiger Besetzung die Gefahr des Weidemangels und Verhungerns der Tiere durchaus nicht ausgeschlossen. Das wird am besten dadurch bewiesen, daß selbst heute, wo noch kaum eine Farm als bestockt gelten kann, mancher Farmer kein Futter mehr für sein Vieh hat. Allerdings war dies oft deswegen der Fall, weil die Weide abgebrannt war oder weil es an Wasserstellen fehlte und daher die vorhandene Weide nicht ausgenutzt werden konnte.

tauschten. Doch derartigen gemeinsamen Unternehmungen stehen zuerst sachlichen auch große persönliche Schwierigkeiten entgegen.

d. Bestockungsziffern.

Über die Bestockungsziffern für Südwest ist eine völlige Übereinstimmung der Ansichten noch nicht erzielt. Es ist klar, daß sie in den südlichen trockeneren Teilen sehr viel geringer sein müssen als im Norden. Im Süden, im Bezirk Warmbad rechnet man, daß man auf 20.000 ha 400 Rinder halten kann, also 50 ha für das Rind, zwischen Kremmendorf und Hassfurt 40 ha. Auf den steinigen Hochflächen des Südens, z. B. bei Kathus, sind für ein Stück Kleinvieh 10 ha erforderlich. Ein Rind braucht auch in den Bezirken Gibeon und Malat hote 20 ha. Im Kromahochland wurde 1914 7 ha für das Rind angenommen. 1916 war man allgemein der Ansicht, daß in den mittleren Hochländern 10 ha für ein Rind noch zu wenig sei. Im Oatwaverlande rechnete man 4 ha Weideboden für das Rind, wobei allerdings die nichtbeweidbaren Berge nicht einbegriffen werden dürfen.

e. Aufkreuzen oder Reinraut?

f. Entwicklungsschläge der Farmwirtschaft.

Auch bei der primitivsten Viehzucht wird die Vermehrung des Viehes nicht dem Zufall überlassen, sondern überwacht. Von den männlichen Tieren werden nur wenige zur Zucht ausgesucht,

Lieg dagegen Farm an Farm, so kann man das Vieh nicht ungehütet lassen, es würde sonst die Weide des Nachbars abdrücken, würde mit seinem Vieh zusammengesotten, und alle Zucht würde vereitelt. Da werden die Herden der einzelnen Posten gehütet. Dieser Zustand der Postenwirtschaft herrscht zur Zeit bei weitem vor in Südwest. Die Weideflächen werden dabei immerhin etwas besser ausgenützt.

g. Weideverbesserung, Futterbau.

Intensiver kann sich der Betrieb nur gestalten, wenn es gelingt, die natürliche Grundlage, die Weide, zu verbessern, besonders die Ungleichheiten der Jahre auszugleichen, oder wenn es wenigstens gelingt, die Weide besser auszunützen. Eine bessere Ausnutzung der Weide kann durch Wassererschließung erreicht werden, und zwar in doppeltem Sinne. Wenn die Tierer in entfernten Wasserstellen laufen müssen, trampeln sie unterwegs viel Gras nutzlos nieder. Das wird vermieden, wenn auf der Farm viele Wasserstellen in geringen Abständen liegen. Außerdem nutzt dann das Tier seine Nahrung wirtschaftlicher aus, nämlich zur Fleischbildung, während beim weiten Laufen viel Nahrung für Muskelarbeit verbraucht wird.

Besonders wichtig ist, für schlechte Regenjahre irgendwie Futter zu beschaffen. Gelingt dies, so kann die Farm bedeutend stärker, den guten Jahren

2. Die einzelnen Tierarten.

a. Rinderzucht.

Das einheimische Rind, sowohl das Damara- als das Ovaherend als auch das eigentliche Afrikanerrind, gibt eine gute Unterlage für die Viehzucht ab. Diese Rinder sind gut akklimatisiert, geben aber wenig Fleisch und sehr wenig Milchergang. Man suchte daher mit hochgezüchteten europäischen Rassen aufzukreuzen, um gute Fleischrinder zu gewinnen. Da das Vieh auf der südwestafrikanischen Weide nicht ohne Anstrengung und Laufen sein Futter findet, kann es nicht wundernehmen, daß nur hatte Rassen, wie die deutschen Berggrasen und die Devonrinder, sich zur Zucht geeignet erwiesen, vorrangigens, daß man langsam und vorichtig hochzüchtete. Niederungs- und wie Friesen und Shorthorns, haben sich weniger bewährt. Das ändert sich natürlich; bald man die Tiere auf Luzerne stellt. Bei Luzernfutter behütet sich die Akklimatisierung eingeführter Rasse keine Schwierigkeiten, wie einzelmäßige Fälle gezeigt haben. Gegenwärtig sind die Farmen noch zu wenig erschlossen für höhere gezüchtete Rasse. Sie müssen zu weit laufen zum Wasser oder zur Weide.

Daher züchten auch viele Farmer reine Afrikanerrinder. Diese stehen an Qualität den europäischen Fleischrassen nicht viel nach, haben aber geringeres Schlachtgewicht. Ihr Hauptnachteil ist, daß sie gut zwei Jahre länger zur völligen Entwicklung brauchen. Es müssen daher zwei Jahrgänge mehr auf der Farm stehen, deshalb kann weniger Muttervieh gehalten werden, und der Umsatz ist bedeutend geringer.

Die jährliche Vermehrung des Rindviehes beträgt nach landläufiger Annahme durchschnittlich 70% vom jeweiligen Mutterviehbestand, wobei die normalen Verluste schon abgezogen sind. Allerdings schwankt sie auch sehr; sie ist in schlechten Regenjahren oder wenn sonst ungünstige Umstände eintreten, viel geringer. Der vier- bis fünfjährige Ochse hat ein Lebensdasein von 8 bis 12 Zeiten, das Schlachtgewicht beträgt etwa die Hälfte davon. Der Preis war vor dem Kriege 30 bis 35 Pf. für das Kilogrammes Lebensdasein.

Milchwirtschaft ist meistens ein vorläufiger Notbehelf, weil durch den Viehverkauf noch nicht genug

b. Kleinvieh.

Verwertet wird das Kleinvieh hauptsächlich zur Deckung des Fleischbedarfs des Landes, außerdem liefert es Felle. Für den Fleischhandel, außer nach der Südafrikanischen Union, kommt das Kleinvieh nicht in Betracht, daher auch nicht für die Zucht in ganz großem Maßstabe.

Um durch Kleinviehzucht wertvolle Ausfuhrprodukte zu gewinnen und so eine bessere Ausnutzung des Landes durch diesen Betriebseinwieg zu erzielen, wurden verschiedene ertragsreiche Tiere eingeführt, nämlich Wolfschafe, Karakulschahe und Angoraziegen.

c. Karakulus*).

Am günstigsten liegen die Verhältnisse für die Karakulzucht. Das Karakul ist ein Fettwacschherr, dem afrikanischen Fettwacschherr nahe verwandt, das in seiner Heimat Buchara unter ähnlichen klimatischen Bedingungen lebt wie in Südwest. Die lockigen Fellchen der unter drei Tage alten Lämmer bilden ein geschätztes Pelzwerk. Bei der neun Verwandtschaft läßt sich das afrikanische Schaf sehr gut mit Karakuls aufkreuzen. Schon Halbblutfellchen werden gut bezahlt. Die vierte Generation (Siebenacht-Blut) ist hinsichtlich des Ertrages den reinblütigen Tieren gleichwertig, die Zucht lohnt sich also sehr schnell.

Daß die gezogenen Tiere sich ans Land anpassen, daß die Nutzungseigenschaften nicht etwa zurückgehen, ist bereits erwiesen und bei der Ähnlichkeit der klimatischen Bedingungen nicht weiter erstaunlich. Die Tiere müssen auf Weide gehalten werden, die Steppenvegetation bietet ihnen das geeignete Futter. Fehlen der Weide Salzpflanzen, so sind Salzlöcher erforderlich. Die Tiere sind ebenso hart wie die einheimischen Schafe, viel weniger empfindlich als Wollschahe.

*) Nach freundlicher Auskunft der Herren Koepell und Scherer.

d. Wollschafe*).

Was die Vegetation anbetrifft, so sind die Gegenenden mit viel Hakendornbüschen ungeeignet, weil sich die Tiere an ihnen die Vliese zerreißen. Auch gewöhnliche Grasarten mit stechenden Granen sind schädlich. Die natürliche Steppenweide bietet vorzügliches Trockenfutter für das Schaf (Abb. 33).

Im Gegensatz zum Fettshwamschaf ist das Wollschaar ein Graafresser, es heißt mit seinen feinen Schnauze nur Halme, keine Blätter, es verhungert trotz der Futterbüchse, wenn kein Gras da ist, wie man auf Farm Nomitas erlebt hat. Die zarten Gräser des Südens sind sehr gutes Futter, besonders Aristida plumulata (Pedengrass), Pappophorum comosoides (Springbokgrass), das südliche Baschmansgras (Eragrostis denuidata) und das Windgras (E. porosa). Wenn die Gräser jung sind, freuen sich die Schafe zu Gräsern, auch die, die später hartstellig sind. Da es im Süden in schlechten Regen

*) Nach freundlicher Auskunft der Herren Koppel und Scherer.

jahren oft völlig an Gras gebricht, so sind vorläufig die mittleren Landesteile sicherer für Schafzucht. Im Süden strebt man danach, durch Anbau auf Bewässerung Futtervorräte zu schaffen. Die Wollschafer sind verschiedenen Krankheiten ausgesetzt, doch ist nach dem heutigen Stande der Veterinärmedizin nicht zu befürchten, daß jemals die Wollschaferzucht durch Seuchen in Frage gestellt werden könnte.

Der Betrieb der Wollschafrucht ist umständlicher und kostspieliger als bei anderen Zuchten, hauptsächlich wegen der Empfindlichkeit des Schafs. Zwar gestattet das Klima von Südwest den freien Weidebetrieb ohne Ställe. Um diesen Vorteil voll auszunützen, ist aber Einbauung der Farm im Koppeln nötig, was sich ja auch aus züchterischen Gründen empfiehlt. Ehe dies aber geschaffen kann, muß das Raubzeug, Schakale und Leoparden, ausgetöret werden, weil sonst zu große Verluste eintreten. Da die Schafe nicht weit laufen können, so müssen, wenn anders die ganze Fläche der Farm ausgenützt werden soll, die Tränkelstellen nahe beieinanderliegen, alle 5 km muß eine Tränke sein. Nicht auf jeder Farm lädt sich so dicht beieinander Wasser erschließen. Ferner ist erforderlich eine Dippahütte und Untersände gegen Regen und Sonnenbrand, die indes billig herzustellen sind, sowie die bei größeren Betrieben notwendigen maschinellen Schureinrichtungen und Verpackungsgeräte.

Ein lebhafte Streit ist darüber entbrannt, ob man die einheimischen Schafe zu Wollschafern aufzüchten oder Wollschafer einführen und Reinzucht treiben soll. Das afrikanische Schaf mit seinen Granenhaar zum Wollschaar umwandeln, ist langwierig*). Aber die Anschaffung von Wollschafermüttern ist sehr kostspielig und vorläufig meint auch dadurch unnötig, daß die Farmen noch nicht genutzt erschlafen sind mit Wasserten und Futterstreu, um hochgezüchtete Schafe ohne Gefahr darauf halten zu können.

e. Angoraziegen.

f. Einhufer.

Die Einhufer, Pferd, Manšter, Esel, sind empfindlich gegen gewisse tropische Krank-

Das Pferd früh Grüser und Futterbüschke, ist aber sehr wähltheit in seiner Nahrung. Es braucht daher zu seiner Erhaltung noch größere Flächen als ein Rind. Aber bei dem hohen Wert des einzelnen Tieres schadet das nichts. Da es nicht gern weidet, wo auch andere Tiere weiden, ist die Pferdezucht schwer mit anderen Zuchten zu vereinen, was ebenfalls eine geringere Ausnutzung der Weide ergibt. Da das Pferd weit laufen kann, so kann die Weide auch bei weissen Wasserstellen ausgenützt werden. Das ist um so wichtiger, als für die Pferdezucht gerade recht trockene Gebiete in Frage kommen.

Die Anlage einer Pferdezucht ist recht kostspielig, besonders weis das Pferdematerial teuer ist. Aber der Betrieb ist sehr einfach. Melken, Scheren, was bei anderen Zuchten die Hauptarbeit macht, fällt ja hier weg.

Die Pferdezucht wird voraussichtlich niemals eine Ausfuhrzucht werden, weil anderwärts bessere Tiere verlangt werden, die gut gefüttert sein müssen. Aber der einheimische Bedarf ist räumlich groß. Das Schutzgebiet braucht keine edlen, sondern vor allem harte, unempfindliche Tiere, die mit der vorhandenen Weide vorliebe haben. Auch ist es gut, wenn sie umschlagen lernen können, da die Aufzucht in steinigen Gebieten, in denen die Hufe hart werden, vorteilhaft. Aus diesen Bedürfnissen ergibt sich die Zuchtrichtung. Es herrscht aber noch keine Übereinstimmung der Ansichten darüber, ob man die gewünschten Tiere besser durch Reinsucht oder durch Aufkreuzen afrikanischer Pferde erhält.

Für Maulzauzaucht gilt Ähnliches wie für Pferdezucht. Das Maultier ist im ganzen unempfindlicher und weniger wäßrischer im Futter. Ein Nachteil der Zucht besteht darin, daß die Maultiere keine Nachkommen kriegen, daß also die Stammhére immer wieder durch Kauf ergänzt werden muß.

Der Esel ist ein sehr harter, mit dem dürftigsten Futter vorziehendes Tier. Deshalb wird er besonders im Süden, wo es für die Rinder oft an Futter mangelt, zu Transportzwecken benützt und auch dort am meistens geziert. Im Namalande sieht man sehr häufig Eselswagen, im Norden fast nur Ochsenwagen. Der Esel bürgert sich aber wegen seiner Anspruchlosigkeit immer mehr ein.

h. Straße

kommen wild in dem Lande vor, finden also durchaus die geeigneten Lebensbedingungen. Die Straßenzucht hatte auch in Südwest erforderliche Anfänge aufzuweisen. Das Einfangen wilder Straße hat sich als unzweckmäßig erwiesen, weil sie in den Feldern schöchter sind als die gezüchteten. Die Zucht geht überall zusammen mit dem Anbau von Luzerne als Futterpflanze. Durch das Fallen des Weltmarktpreises im Jahre 1913 hat die Straßenzucht auch in Südwest einen schweren Schlag erlitten. Der Krieg hat darauf die Anfänge der Straßenzucht völlig vernichtet, nur wenige Zucht-
Die Schweinezucht ist auf Farmen mit Maisbau ein Nebenbetrieb, der wenig Mühe verursacht und bei günstigen Absatzerhöhungen, die allerdings nicht immer vorhanden sind, viel einbringt. In der Regel werden die Schweine im Stall gehalten und gemästet, bisweilen stellt man sie auch auf ein Lausenfeld. Schneide in Okanagango am Waterberge hat sie sogar frei auf der Farm weiden lassen. Dabei wurden sie allerdings nicht so fett, und es gingen auch einige Tiere verloren, aber da er keine Puttkosten hatte, hobte die Zucht doch.

k. Geflügel.

Hähner, Enten und Puten werden fast auf jeder Farm für den Eigenbedarf gehalten, in der Nähe größerer Orte auch für den Absatz.

l. Bienen.

Die Bienenzucht findet in Südwest sehr günstige Bedingungen. Die Tracht dauert viel länger als in Deutschland. Im Norden fällt die eine Haupttracht in die Zeit der Baumsblüte, Ende August bis Oktober, die zweite in die Regenzeit, wenn Grass und Bäumen herauskommen. Wo Bananen wachsen, dauert die Tracht fast das ganze Jahr.

B. Der Ackerbau.

1. Auf Regenfall.

Im Otavi-Berglande fällt durchschnittlich soviel Regen wie in Deutschland, je weiter nach Süd-

In Nordamerika rechnet man in Gegenden von durchschnittlich 250 mm Niederschlag auf sichere Ernten mit dem Trockendarmsystem. Dazu sind aber lockerboden von 25 bis 3 m Tiefe und von gleicher dicht, feinkörniger Beschaffenheit erforderlich, damit genügend Feuchtigkeit aufgespeichert werden und damit die Feuchtigkeit der tieferen Schichten wieder zu den Pflanzenwurzeln aufsteigen kann. Diese Voraussetzung ist in Südwestafrika oftmals nicht erfüllt. Im Bezirk Grootsfontein haben die Acker manchmal nur 40 cm Feinboden, gerade genügend, um gut zu pflegen. Da läßt sich natürlich nicht viel Wasser im Boden aufspeichern. Daher kommt es, daß in diesen so viel regenreicheren Gegenden dennoch die Ernte öfter vertrocknet ist, wenn in der Wachstumszeit eine Regenpause von sechs bis acht Wochen eintrat.

Im allgemeinen hat man in Südwest den Ackernbau sehr extensiv betrieben. 1913/14 waren nach W. Zastrow im Bezirk Grootsfontein auf 119 Farmen 4550 ha bestellt (39). Dabei ist zu berücksichtigen, daß viele Farmer erst angefangen und nur kleine Felder hatten. 1918 konnte wohl 50 bis 100 ha als die normale Größe des Ackeralandes einer Farm im Bezirk Grootsfontein gelten. Bei solcher Ausdehnung des Ackeralandes ist nur eine dünftige Bodenbearbeitung und meist keine Düngung möglich, die Erträge sind gering, und, was schlimmer ist, sie sind unsicher, weil schlecht bearbeitetes Land schneller austrocknet als gut bearbeitetes. In dem guten Regenjahre 1913/14 war der Durchschnittsertrag an allen Feldfrüchten im Bezirk Grootsfontein 11 Zentner vom Hektar, in dem schlechten Regenjahr 1910/11 noch nicht ein Zentner.

Zur Erzielung größerer Erträge ist eine sorgfältige Bodenbearbeitung und aufwendige Düngung nötig. Das ist aber nur auf kleineren Flächen möglich, weil es sowohl an Arbeitskräften als auch an Düngemitteln fehlt. In Okaneu werden zwei Felder von je 12 oder 13 ha abwechselnd als sorgfältigst bewirtschaftet und gedüngt und dabei bis 85 Zentner Mais vom Hektar erzielt.

Durch die Notwendigkeit der Düngung wird die Viehwirtschaft zugleich ein unentbehrliches Hilfsmittel des Ackerbau. Beim Weidebetrieb geht in allgemeinen der Dünger verloren, nur soweit die Tiere nachts im Kral gehalten werden, also meist nur von Milchkühen und Kälbern läßt er sich verwerten. Ein praktisches Düngungssystem wird auf Farm Neitsas, Bezirk Grootsfontein, angewandt. Während der Zeit, wo das Feld nicht bestellt ist, also während der Trockenzeit und auf Brachfeldern auch in der Regenzeit, wird der Kral auf den Feldern aufgestellt und alle 14 Tage verlegt, so daß im Laufe des Jahres das ganze Feld gedüngt wird. Der Kral besteht aus einer rechteckigen Drahtzäunung von etwa 50 mal 50 m, deren vier Seiten sich einzeln leicht verlegen lassen. Daraus ergibt sich zugleich, daß die Größe des Ackeralandes durch die Zahl der Kühe beschränkt ist, solange man nicht künstlichen Dünger benutzen kann, was auf den entfernter liegenden Farmen wegen der Frachtkosten vorläufig unzweckmäßig ist.

Auch Gründüngung ist kostspielig, weil sie ein zweites Brachjahr nötig macht. Die natürliche Vegetation in den stärker bewaldeten, für den Ackernbau in Betracht kommenden Gebieten, ist Busch, Dornbusch oder Labusch, im Nordosten sogar Trockenwald. Es ergibt sich daraus, daß die Anlage von Feldern eine bedeutende Rodarbeit erfordert. Bei der geringen Zahl von Eingeborenen, die im Lande zur Verfügung stehen, folgt weiter, daß die Umschmachtung nur langsam vorstatten gehen kann. Die Kosten des Bodens betrugen in einigen mir mitgeteilten Fällen
im Dornbuschland 100 bis 300 Mark für den Hektar, in offenen Lande viel weniger.

b. Bodenbeschaffenheit, Ackerbaugebiet.

Zum Ackerbau ist tiefgründiger Lockerboden erforderlich, zum Trockenfarmen müßte er sogar 2½ bis 3 m Tiefe haben, damit genügend Feuchtigkeit darin aufgespeichert werden kann. Dem Westen und Süden des Landes und auch den Bergländern um Windhoek fehlen solche Böden, dort tritt außerdem die Schwiemenländ der nackte Fels zutage oder ist nur durch eine dünne Verwitterungsdecke verhüllt. Doch sind dies die nämlichen Gebiete, in denen auch klimatisch der Ackerbau nicht in Betracht kommt. Im regenreicheren Hochland der Mitte bilden die Omurambasschweinmländer geeignete Böden, während die Rivierschweinmländer sich seltener eignen, weil oft Gerüllagen die gleichmäßige Feinkörmigkeit des Bodens, die für das kapillare Aufsteigen des Wassers so wesentlich ist, unterbrechen. Dagegen tragen die östlichen und nördlichen Gebiete des Landes, die auch klimatisch fast allein geeignet sind, eine Decke von Lockerboden, die sich an vielen Stellen als geeignet für den Ackerbau erwiesen hat. Besonders die tiefgründigen lehmigen Sandböden, die im Vorsandfelder herrschen und auch im eigentlichen Sandfeld häufig vorkommen, sind günstig. Wieweit der Kalahariand sich eignet, ist noch die Frage, aber ansprechende Gewächse, wie Ovambohöhen, scheinen auch darin gut zu gedeihen.

c. Verwertung der Ackerprodukte.

Das ist nicht. Ackerbau wird nicht, wie es jetzt im Grootfonteiner Bezirk hauptsächlich der Fall ist, der Hauptbetrieb sein, neben dem die Viehzucht ertritt. Überall macht sich das Bedürfnis geltend, in schlechten Regenjahren, wenn die Weide knapp wird, eine Hilfsquelle zur haben, um das Vieh durchzustimmen. Darin liegt m. E. die Zukunft des Ackerbaues in Südwest. Er wird ein Hilfsbetrieb der Viehzaucht werden. Der Anbau von Pflanzenpflanzen wird es ermöglichen, die Farmen sehr viel dichter zu bestocken, als man es zur Zeit kann. Damit kommen wir zu den
d. angebauten Pflanzen.

Bei weitem das Hauptgewächs ist bis jetzt überall der Maiss, der im Lande stark gebraucht wird,
namentlich auch als Eingeborenenkost (Abb. 31). Der Deimonatsmais bietet die Möglichkeit, auch in Jahren, wo ergebige Regen sehr spät beginnen und die Vegetationszeit bis zu eintretenden Frösten kurz ist, doch noch eine Ernte zu erzielen. Regnet es früher, so nimmt man länger wachsende, ertragreichere Arten, die in Gänze Grootfonsinite bracht man nicht vor Ende Mai mit Frost zu rechnen. Hier kann man also noch im Februar Mais säen. Weiter südlich treten Früste früher ein, da geht es im Februar nicht mehr.

Lezere auf Regenfall zu bauen wurde bis jetzt nur mit geringem Erfolg versucht. Man darf aber erwarten, daβ wenigstens in den leichten Landesteilen und bei günstigem Boden auch dies vielfach möglich sein wird und somit für die Viehzucht ein außerordentlich wertvolles Futter gewonnen wird.

Vielfach angebaut werden ferner Bohnen, und zwar die sogenannten Betschuma- oder Ovansbobohnen. Sie sind ein äußerst ansprechloses Gewächs; schon bei 120 mm Regenfall hat man damit Ernten erzielt. Sie werden als Eingeborenenkost verwandt oder auch als Gründüngung. Bis heute sind sie in Südwest die beste Gründüngungsplanze.

Kafferkorn geeignet gut und wird hauptsächlich als Pferdefutter verwandt.

2. Auf Bewässerung.

Läuft das Wasser höher als das zu bewässernde Gelände, wie es bei den Quellen des Otaviheranges und des Waterberges und bei Standläufen der Fall ist, so kann man das Wasser einfach durch einen Kanal oder eine Rinne nach den Feldern laufen lassen, wo es auf die einzelnen Rinnen oder

Die Beerselung erfolgt entweder in Furchen, in oder zwischen denen die Pflanzen stehen, oder durch Tiefbeete, die von etwa 15 cm hohen Dümmen umgeben sind und vollständig überflutet werden. Natürlich müssen diese Beete völlig eben sein, damit sie gleichmäßig überschwemmt werden. Deshalb können sie nur eine beschränkte Größe haben, weil sonst die Einbauung zu schwierig ist.

Und nun das Obhut: Von Steinfrüchten gedeihen einige Sorten Pflaume und Aprikosen sowie japanische Pflaumen. Ebenso gedeihen Apfel, jedoch bisher anscheinend nicht, doch ist die Sortenauswahl noch nicht festgestellt. Sehr gut gedeihen, wo keine stärkeren Frösbe auftreten, die Citrusfrüchte Apfelsinen, Zitronen, Grenadilla, Mandarinen, Grape
3. Auf Bodenfeuchtigkeit.

Ein Mittelweg zwischen Anbau auf Bodenfeuchtigkeit und auf Berieselung ist der Anbau auf solchen Flächen, die erst durch Überflutung gründlich durchfeuchtet wurden und nach dem Ablauf des Wassers keiner Berieselung mehr bedürfen. Da hierbei die Feuchtigkeit sich nicht aus dem Grundwasser ergänzen kann, muß sie durch Bodenbearbeitung ebenso wie beim Trockenfarnen vor der Verdunstung sorgfältig geschützt werden.

In Omusati, Bezirk Gibeon, war 1917 der Lebendboden der Pfanne Gnasbrockley mehrfach tief überwogen worden und so von Wasser durchfeuchtet, daß darunter gediehen und Weizen gebaut wurde. Er wuchs sehr gut, wurde aber durch Springböcke, Krähnen und Uneutier aufgefressen.

Auch auf Bodenfeuchtigkeit können dieselben Pflanzen angebaut werden wie auf Berieselung.

C. Landwirtschaftliche Industrien.

Schließlich seien noch die Anfänge der Industrie erwähnt, die sich in unmittelbarem Anschluß an die Landwirtschaft schon jetzt entwickelt haben, und die sich mit der ersten Verarbeitung und Zubereitung der landwirtschaftlichen Erzeugnisse beschäftigen.

An der Milchwirtschaft schließt sich die Butter- und Käsebereitung, die meist nur für den Eigenbedarf, oft aber auch für den Verkauf im Lande arbeitet. Es scheint nicht unmöglich, daß Butter, Käse und Konservenmilch einmal Ausführprodukte des Landes werden. So gut wie von Sibirien wird
man sie auch von Südwestafrika nach Europa verfrachten können.

Der Fleischverwertung dienen die Fleischkonservenfabriken in Karibib und Okahandja, bis jetzt allerdings sehr kleine Unternehmungen.

In Osona, Gemsboklagge und Swakopmund gibt es Spiritusbrennereien, von denen allerdings nur die ersten beiden Landesprodukte verarbeiten, die Swakopmunder aber ebenso wie die Brauereien des Landes eingeführte Rohstoffe benutzen.

Manche dieser Industrien werden später die Vermittler der Ausfahr werden, wo die Ausfah des Rohproduktes zu schwierig oder zu teuer ist. Dazu sich zu entwickeln haben Aussicht: die Butterei und Kaseta, die Fleischkonservenfabrikation, wohl auch die Herstellung von Obstkonserven und von Süßweinen.

III. Landwirtschaftliche Gebiete.

In einem Trockenklima, wie dem südwestafrikanischen, ist der Regenfall der ausschlaggebende Faktor. Die Hauptgebiete der Landwirtschaft sind dem Regenfall entsprechend angeordnet. Von Südwest nach Nordost folgen mit zunehmender Regenmenge drei Streifen verschiedener landwirtschaftlicher Möglichkeiten aufeinander:

I. Die westliche Wüste und Halbwüste, wo die Landwirtschaft überhaupt ausscheidet, mit Ausnahme der Oasen.

II. Die reinen Viehzuchtgebiete.

III. Die stärker beregneten Teile im Osten und Norden, in denen sich Viehzucht bei geeignetem Boden Ackerbau auf Regenfall möglich ist.

Auch natürliche Verschiedenheiten, kleinere Unterschiede des Klimas, die Oberflächengestalt, der Boden, die Verteilung des Wassers usw. bewirken bei der großen Ausdehnung der drei Hauptgebiete noch weitere Verschiedenheiten der Landwirtschaft.

Wenn wir die erwähnten drei Streifen als Haupteinteilung, die durch die Besiedlung und durch kleinere natürliche Unterschiede hervorgerufen werden, unterscheiden, so erhalten wir folgende landwirtschaftlichen Gebiete von Südwestafrika:

Ia. Namibwüste, keine Landwirtschaft möglich, außer Ökonomien in den Flutländern, die bis jetzt nur im Swakop von Bedeutung sind.

Ib. Die Hälfte der südlichen Küstenabnachtung gestattet in guten Regenjahren Viehzucht, in schlechten maßten die dort gelegenen Farmen verlassen werden.

IIb. Das Viehanhabungsgebiet des westlichen Herrenlandes. In der Hauptstadt Windhuk.

Ja, es ist das Hauptgebiet der Wollschaflrechte. Die
Hauptgesäße liegen auf westlichen Gebirgsrücken —
Naukluft, Aweeb, Duwisib —, auch die kalkige
Wüstenlandschaft ist für Pferdezucht geeignet.
Die Bezirke Rehoboth, Gibeon und Maltahöhe, die
größtenteils hierin gehören, hatten nach der Sta-
nistik von 1913 — der letzten, die vorliegt — 60 %
der Wollschafe und 35 % der Pferde des Landes. (8)
Da hier in sehenswerten Jahren das Getreide ausbleibt, so
suchen die fortgeschrittenen Farmer durch künst-
liche Bewässerung Futtermittel zu schaffen. Die
großen Bewässerungsanlagen von Voigtgrund, Ha-
rüben, aber auch der Weizenbau mit Hilfe des arte-
sischen Wassers im Ausobal, gehören hierher.

III. Im südlichen Namibland, einschließlich
der Konkob und der Fischflusserke, ist der Regen-
fall geringer, hier herrscht die Karrusvegetation.
Die Viehzucht kann nur sehr extensiv getrieben
werden, so daß Farmen von 20 000 ha und mehr erforderlich sind. Afrikanerschahe und Ziegen, die
von den Futterbüschen der Karrusvegetation leben
und nicht auf Graswuchs angewiesen sind, spielen
hier eine große Rolle. In den Bezirken Keetmans-
hoop, Hanu, Wänneb und Bethanie, die im
großen ganzen mit diesem Gebiete zusammenfallen,
standen 1913 nur 12 % der Rinder des Landes, aber
35 % der Afrikanerschahe und 28 % der Ziegen. Im
ganzen ist die Landwirtschaft hier noch sientlich
primitiv. Fast die Hälfte der Burenbevölkerung
des Landes sitzt in diesem Gebiet.

Von dem Gebiete, wo Ackerbau klimatisch
möglich ist, fällt ein sehr großer Teil aus der Farm-
zone heraus. Wir können hier unterscheiden:

IIIA. Das Amboland mit Viehzucht und Acker-
bau der Eingeborenen. Keine weiße Besiedlung.

IIIB. Der Okawangogebiet, ebenfalls Vieh-
zucht und Ackerbau, auch Bewässerungsbau der
Eingeborenen, keine weiße Besiedlung.

IIIC. Das Sandfeld und Karasfeld außerhalb
des befreiten Landes ist so gut wie unbewohnt,
nur von Buschmännern durchsetzt. Keine Land-
wirtschaft. Darin bildet die Betschuanakolonie
von Aminius eine Insel mit Viehzucht und Acker-
bau auf Regenfall.

IIID. Das Hauptackergebiet des Landes im
Ovamboland und der Grootfonteiner Fläche.
1913/14 waren hier 4 500 ha bestellt, 1917/18
dürften es über 6 000 gewesen sein. Wenn auch die
Rindvieharente die eigentliche Grundlage des Farm-
betriebes bildet, so bringt doch, so lange die Farmen
noch nicht bestockt sind, der Maishub dem Farmer
mehr ein, wenigstens mehr hares Geld. Bei den
vielen Quellen und dem flachen Grundwasser dieses
Gebietes ist Bewässerungsbau von Bedeutung,
hauptsächlich Weizen, Obst, Wein und Tabak.

Ille. Das mittlere Herrooland ist wie das west-
ländische (Ilb) ein flachwelliges Land mit Inselbergen.
Der größere Regenfall und die stärkere Schicht von
Verwitterungsboden macht auch den Ackerbau
möglich, besonders im regenerischen Gebiet des
Waterberges. Ein Hauptgebiet der Großvieharente.
In dem welligen Lande sind Staudenwälder vieler-
fach vorhanden. In Rivieren und manchmal auch
im Lohmboden abseits von Rivieren ist flaches
Grundwasser vorhanden. Größere Bewässerungs-
anlage in Otsana und am Waterberge.

IIIIE. Das Vorsandfeld und Sandfeld, soweit es
zum bekannten Gebiete gehört. Das Vieh ist durch
die Lahnswege geführt. In der östlichen Fläche ist
fast überall flaches Grundwasser, aber keine Möglic-
heit zum Darmbau. Der Ackerbau auf Regenfall
findet in dem tiefgründigen, sandigen Lohmboden
des Vorsandfeldes günstige Bedingungen, wenigstens
im nördlichen Teil, im östlichen Herrooland.

IIIIG. Das Windhuker Hochland bildet land-
wirtschaftlich ein bevorzugtes Gebiet. Ich habe es
als Einheit zusammengefaßt, obwohl im westlichen
Teile, im Khomaslande, Ackerbau auf Regen-
fall nicht mehr in Betracht kommt. Dank seiner
Höhe hat es einen ziemlich günstigen Regenfall
und manche stürmische Plätze. Es ist ein sehr gutes
Weideland für alles Vieh; Rinder, Pferde und Woll-
schahe gedeihen hier gut. Die Riviere haben meist
Grundwasser, und in den Tälern bieten sich zahl-
reiche Staudenwälder, die im Khomaslande
schen ausgiebig zu Dammhauten benutzt sind. Da-
ü kommt, daß das Hochland eine günstige Ver-
kehrsage hat und am frühsten von Deutschen be-
siedelt ist. Es ist daher das entwickelteste Gebiet
der ganzen Kolonie.
Literatur.

Im Text verweist die fettgedruckte Zahl auf das unter dieser Nummer genannte Werk, die zweite Zahl auf die Seite.

10. Mitteilungen aus den Deutschen Schutzgebieten.

Erläuterung zu den Abbildungen.

Abb. 2. Die langen, 10 bis 30 m hohen Dünenwälle verlaufen etwa nach SSO (scherende Windrichtung SW). Zwischen den einzelnen Dünenfeldern und am linken Bildrand ist die großartige Struktur des Dünenlandes sichtbar, der die Dünen aufsteigen.

Abb. 8. Die Querbrüche, die die kleinen Kalkberge bedeckt, ist in den Vorderzubit gelegen und an einer Verwaltung abgewendet. Vom hinteren Hallenplatz, einen Sukkulanten (Kochanthus).

Abb. 9. Acacia giffordi, Farm Okambo, Querschnitt des Epoche.

Abb. 10. Der See war 2. Juli 1914 über 60 m tief. Vor dem Flußschlamm, der die Fläche weihet von 20 oder seltener von Meter tiefer. 1909 war das Wasser gestiegen bis etwa 10 m über den ursprünglichen Stand, so hoch als die Flächenebenen sich verändern.

Abb. 11. Im Talkessel von Grootfontein (Wüstenfrischbohlschlag) liegt der Klassenschiefer im Boden. Ein Regenzeit von 5 mm in 20 Minuten am 16. März 1914 brachte sofort die Böden ein, die nicht sicheres Wasser in Fällen über die Steindruck einbringen.

Abb. 12. Tiefe des Kalkes über 3 m, Inhalt etwa 200 cm.

Abb. 4. Blick von einem Inselberg der Küstennaabsetzung auf den Steilhang des Binnenhochlandes mit vorgelagerten Inselbergen.

Abb. 5. Fläche der Küstennaabsetzung, dahinter der Steilhang, analog zu Abb. 4.

Abb. 7. Pionne im Lockerboden (Vley) in der Trockenzeit.
Abb. 8. Inselberglandschaft des Hereroandes.

Zu: Dr. Jaeger und Dr. Walther. Beiträge zur Landeskunde von Südwestafrika.

Mitteilungen aus den Deutschen Schutzgebieten. Ergänzungsheft 14. Tafel III.

Abb. 10. Kamelephant im Aufschüttungsgeland des Ostror (Vorstandsfeld).

Abb. 11. Der GuSSpass, ein Karstsee in einem tiefe Kessel des Dolomiggesteins.
Abb. 11. Abfließendes Regenwasser im Karrusandstein.

Abb. 15. Becken im Bett des Flachflusses.
Zu Dr. Jaeger und Dr. Waisel. Beiträge zur Landeskunde von Südwestafrika.

Mitteilungen aus den Deutschen Schutzgebieten. Ergänzungsheft 14. Tafel IV.

Abb. 17. Zentrallage der Boerbank.

Abb. 18. Daugstätte. Blick abwärts in die Talaue.

Abb. 20. Der Boerbank kommt ab 3 km östlich des Rundaniauf die Talaue.

Abb. 33. Kalkomramba: Der obere Epukiro.

Abb. 33. Wollschaufelherde auf Farm Goosaa, in einem Talgrund der Weitrandhochfläche.

Abb. 34. Melken der Kühe. Farm Okwangoewings am Waterberg.
Abb. 35. Offene Spalten im Plattenkalk der Otavi-Formation.

Abb. 36. Agflesionsbaum. Farm Gaub.

→ Swakopflußbett.
DEUTSCH-SÜDWESTAFRIKA

Reisewege
von
Fritz Jaeger und Leo Waibel
1914 - 1919.

Erklärungen:

- Reisewege von Fritz Jaeger
- Reisewege von Fritz Jaeger und Leo Waibel
- Reisewege von Leo Waibel.